Landslide Hazard Assessment Map as an Element Supporting Spatial Planning: The Flysch Carpathians Region Study
Abstract
:1. Introduction
2. General Overview of the Landslide Problem in Poland
2.1. Geospatial Management
2.2. Climate and Hydrological Conditions of the Polish Carpathians
2.3. Subsoil Conditions and Geotechnical Parameters
3. Materials and Methods
3.1. Characteristics of the Case Study Area
3.2. Methodology
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Westen, C.J.; Rengers, N.; Soeters, R. Use of Geomorphological information in indirect landslide susceptibility assessment. Nat. Hazards 2003, 30, 399–419. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, W. Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation. Remote Sens. 2020, 12, 2180. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Carrara, A.; Guzzetti, F.; Cardinali, M.; Reichenbach, P. Use of GIS technology in the prediction and monitoring of landslide hazard. Nat. Hazards 1999, 20, 117–135. [Google Scholar] [CrossRef]
- Chacón, J.; Irigaray, C.; Fernandez, T.; El Hamdouni, R. Engineering geology maps: Landslides and geographical information systems. Bull. Eng. Geol. Environ. 2006, 65, 341–411. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Galli, F.; Ardizzone, M.; Cardinali, F.; Guzzetti, P.; Reichenbach, F. Comparing landslide inventory maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Shahri, A.A.; Spross, J.; Johansson, F.; Larsson, S. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena 2019, 183, 104225. [Google Scholar] [CrossRef]
- Kanungo, D.; Arora, M.; Sarkar, S.; Gupta, R. Landslide susceptibility zonation (LSZ) mapping—A review. J. South Asian Stud. 2009, 2, 81–105. [Google Scholar]
- Hellwig, Z. Application of the taxonomic method to the typological division of countries due to the level of their development and the resources and structure of qualified personnel. Stat. Rev. 1968, 4, 307–327. [Google Scholar]
- Van Westen, C.J.; Rengers, N.; Terlien, M.T.J.; Soeters, R. Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol. Rundsch. 1997, 86, 404–414. [Google Scholar] [CrossRef]
- Kaminski, M. Landslide susceptibility map in a regional scale—Example from of San valley in the Dynow foothills. Bull. PIG 2012, 452, 109–118. (In Polish) [Google Scholar]
- Wang, Y.; Cao, Z.; Li, D. Bayesian perspective in geotechnical variability and site characterization. Eng. Geol. 2016, 203, 117–125. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflic, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Grabowski, D.; Raczkowski, R. Geohazards in Poland—Landslides. Available online: http://www.kgfiks.oig.ug.edu.pl/downloads/2012/jc/gp_pugp-materialy-1-geozagrozenia.pdf (accessed on 10 July 2020).
- Polish Geological Institute. System of Landslide Protection—SOPO. Available online: http://geoportal.pgi.gov.pl/portal/page/portal/SOPO (accessed on 10 July 2020).
- Starkel, L. Geomorphic hazards in the Polish Flysch Carpathians. Studia Geomorphol. Carpatho Balc. 2006, 40, 7–19. [Google Scholar]
- Segoni, S.; Rosi, A.; Lagomarsino, D.; Fanti, R.; Casagli, N. Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat. Hazards Earth Syst. Sci. 2018, 18, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.L.; Zhang, L.; Zhang, L.M. Stability analysis of rainfall induced slope failure: A review. Geotech. Eng. 2011, 164, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Climate Data. Available online: https://pl.climate-data.org/location/417671/ (accessed on 12 August 2020).
- Landslides. Available online: https://www.pgi.gov.pl/en/krakow/oddzial-karpacki/monit/krakow1/osuwiska-komunikaty/6325-uwaga-osuwiska.html (accessed on 6 September 2020).
- Zhang, L.; Li, J.; Li, X.; Zhang, J.; Zhu, H. Rainfall-Induced Soil Slope Failure, Florida; Taylor & Francis Group: Abingdon, UK, 2016. [Google Scholar]
- Rosi, A.; Peternel, T.; Jemec Auflič, M.; Komac, M.; Segoni, S.; Casagli, N. Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 2016, 13, 1571–1577. [Google Scholar] [CrossRef]
- European Committee for Standardization. Eurocode—Basis of Structural Design; European Standard, EN 1990:2002; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- International Organization for Standardization. Standard, ISO 2394:2015—General Principles on Reliability for Structures; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- Phoon, K.-K.; Retief, J.V. Reliability of Geotechnical Structures in ISO2394; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Thiel, K. (Ed.) Rock Mechanics in Hydroengineering. Developments in Geotechnical Engineering; Elsevier: New York, NY, USA, 1989; Volume 51. [Google Scholar]
- Kokoszka, W.; Skrzypczak, I.; Wilk, K. Analysis of geotechnical properties of miocene deposits of the Carpathian foredeep. Civ. Environ. Eng. Rep. 2018, 28, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J. Landslide formation modeling and surveying of the slope in unsaturated and saturated ground conditions. E3S Web Conf. 2019, 133, 01010. [Google Scholar] [CrossRef]
- Sulewska, M. Applying artificial neural networks for analysis of geotechnical problems. Comput. Assist. Mech. Eng. Sci. 2011, 18, 230–241. [Google Scholar]
- Landslide Documentation Card AB7. Available online: http://www.strzyzowski.pl/bip/atach/3/50/3817/Karta%20dokumentacyjna%2018-19-032-ab7.pdf (accessed on 12 July 2020).
- Landslide Documentation Card AB9. Available online: http://www.strzyzowski.pl/bip/atach/3/50/3819/Karta%20dokumentacyjna%2018-19-032-ab9.pdf (accessed on 12 July 2020).
- Zabuski, L.; Gil, E.; Bochenek, W. Interdependence between groundwater level and displacement of the landslide slope. Pol. Geol. Inst. Spec. Pap. 2004, 15, 39–41. [Google Scholar]
- Raczkowski, W.; Mrozek, T. Activating of landsliding in the Polish flysch Carpathians by the end of the 20th century. Studia Geomorphol. Carpatho Balc. 2002, 36, 91–111. [Google Scholar]
- PANDa Rainfall Model. Available online: https://retencja.pl/uslugi/modelowanie/model-opadowy-panda-polski-atlas-natezen-deszczow/ (accessed on 12 January 2021).
- Mokritskaya, T.P.; Samoylych, K.A. Attempt to Create a Cartographic Forecast Model of Subsidence Degradation for the Right Bank Area of the City Dnipro. Dnipropetr. Univ. Bull. Ser. Geol. Geogr. 2017, 25, 117–122. [Google Scholar]
- Skrzypczak, I.; Kokoszka, W.; Kogut, J.; Oleniacz, G. Methods of Measuring and Mapping of Landslide Areas. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; p. 022013. [Google Scholar]
- Remondo, J.; Gonzalez, A.; Diaz de Teran, J.R.; Cendrero, A.; Fabbri, A.G.; Chung, C.J.F. Validation of landslide susceptibility maps: Examples and applications from a case study in Northern Spain. Nat. Hazards 2003, 30, 437–449. [Google Scholar] [CrossRef]
- Conte, E.; Donato, A.; Troncone, A. A simplified method for predicting rainfall-induced mobility of active landslides. Landslides 2017, 14, 35–45. [Google Scholar] [CrossRef]
- Brocca, L.; Ponziani, F.; Moramarco, T.; Melone, F.; Berni, N.; Wagner, W. Improving Landslide Forecasting Using ASCAT-Derived Soil Moisture Data: A Case Study of the Torgiovannetto Landslide in Central Italy. Remote Sens. 2012, 4, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Caloiero, T.; Pasqua, A.A.; Petrucci, O. Damaging Hydrogeological Events: A Procedure for the Assessment of Severity Levels and an Application to Calabria (Southern Italy). Water 2014, 6, 3652–3670. [Google Scholar] [CrossRef] [Green Version]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise revive of state of arte. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Lagomarsino, D.; Segoni, S.; Rosi, A.; Rossi, G.; Battistini, A.; Catani, F.; Casagli, N. Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Nat. Hazards Earth Syst. Sci. 2015, 15, 2413–2423. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Van Westen, C.J.; Spilotro, G. Assessing landslide exposure in areas with limited landslide information. Landslides 2014, 11, 463–480. [Google Scholar] [CrossRef]
- Bardi, F.; Raspini, F.; Frodella, W.; Lombardi, L.; Nocentini, M.; Gigli, G.; Morelli, S.; Corsini, A.; Casagli, N. Monitoring the Rapid-Moving Reactivation of Earth Flows by Means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sens. 2017, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Saaty, L.T. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Komac, M.A. Landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology 2006, 74, 17–28. [Google Scholar] [CrossRef]
- Leśniak, A.; Wieczorek, D.; Górka, M. Selection of the variant of the aluminium-glass facade implementation using the AHP method. In International Scientific Siberian Transport Forum; Springer: Cham, Switzerland, 2019; pp. 536–543. [Google Scholar]
- Sztubecka, M.; Skiba, M.; Mrówczyńska, M.; Bazan-Krzywoszańska, A. An Innovative Decision Support System to Improve the Energy Efficiency of Buildings in Urban Areas. Remote Sens. 2020, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Leśniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. Fuzzy AHP application for supporting contractors’ bidding decision. Symmetry 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Leń, P.; Oleniacz, G.; Skrzypczak, I.; Mika, M. Methodology for Assessing the Size and Liquidation of the Outer Patchwork of Land. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; p. 032020. [Google Scholar]
- Bonham-Carter, G.F.; Agterberg, F.P.; Wright, D.F. Weights of Evidence Modeling: A New Approach to Mapping Mineral Potential. In Statistical Applications in the Earth Sciences; Agterberg, F.P., Bonham-Carter, G.F., Eds.; Canadian Government Publishing Centre: Ottawa, ON, Canada, 1989; pp. 171–183. [Google Scholar]
k | Thematic Section (Czn) | Weight (wk) | j | Special Feature in Thematic Section | Weight (wj) |
---|---|---|---|---|---|
1 | Physiographic | 0.01 | 1 2 | Slope angle > 15 (°) Slope angle 9~15 (°) | 0.4 0.6 |
2 | Tectonic | 0.18 | 1 2 | Fault dislocations Fold dislocations | 0.6 0.4 |
3 | Hydrological and hydrogeological | 0.2 | 1 2 3 | Maximum depth of groundwater (m) Average total sum of rainfall > 100 (mm) and rainfall intensity Pore fissure water | 0.3 0.5 0.2 |
4 | Lithological | 0.2 | 1 2 3 | Shales and sandstones Silty clays Clays | 0.25 0.5 0.25 |
5 | Morphometrical | 0.2 | 1a | Total surface (ha) | 0.01 |
(a) General (b) Main landslide scarp (c) Toe and colluvium | 2a | Slope angle (°) | 0.25 | ||
3a | Length (m) | 0.01 | |||
4a | Width (m) | 0.01 | |||
5a | Height max. (m asl) | 0.1 | |||
6a | Height min. (m asl) | 0.03 | |||
7a | Part of another landslide (ha) | 0.01 | |||
1b | Scarp height (m) | 0.07 | |||
2b | Slope angle (°) | 0.12 | |||
3b | Minor scarps (pcs) | 0.01 | |||
4b | Initial fissures (pcs) | 0.01 | |||
1c | Average thickness (m) | 0.3 | |||
2c | Slip surface | 0.07 | |||
6 | Geotechnical | 0.2 | 1 2 3 | Angle of internal friction (°) Cohesion (kPa) Moisture content (%) | 0.3 0.3 0.4 |
7 | Land cover | 0.01 | 1 2 3 | Intensive Medium Poor | 0.4 0.4 0.2 |
Physiographic | Tectonic | Hydrological and Hydrogeological | Lithological | Morphometrical | Geotechnical | Land Cover | |
---|---|---|---|---|---|---|---|
Physiographic | 1.0000 | 0.1429 | 1.0000 | 0.1111 | 1.0000 | 0.2500 | 1.0000 |
Tectonic | 7.0000 | 1.0000 | 9.0000 | 1.0000 | 4.0000 | 1.0000 | 0.1429 |
Hydrological and hydrogeological | 9.0000 | 0.1111 | 1.0000 | 0.2500 | 1.0000 | 7.0000 | 1.0000 |
Lithological | 6.0000 | 3.0000 | 4.0000 | 1.0000 | 0.1429 | 1.0000 | 3.0000 |
Morphometrical | 3.0000 | 0.1111 | 9.0000 | 7.0000 | 1.0000 | 0.3333 | 1.0000 |
Geotechnical | 4.0000 | 2.0000 | 4.0000 | 0.2000 | 3.0000 | 1.0000 | 9.0000 |
Land cover | 0.1111 | 0.1429 | 0.1429 | 0.1429 | 0.1429 | 0.1111 | 1.0000 |
Physiographic | Tectonic | Hydrological and Hydrogeological | Lithological | Morphometrical | Geotechnical | Land Cover | Weight (wk) | |
---|---|---|---|---|---|---|---|---|
Physiographic | 0.033 | 0.022 | 0.036 | 0.011 | 0.097 | 0.023 | 0.062 | 0.04 |
Tectonic | 0.232 | 0.154 | 0.320 | 0.103 | 0.389 | 0.094 | 0.009 | 0.19 |
Hydrological and hydrogeological | 0.299 | 0.017 | 0.036 | 0.026 | 0.097 | 0.655 | 0.062 | 0.17 |
Lithological | 0.199 | 0.461 | 0.142 | 0.103 | 0.014 | 0.094 | 0.186 | 0.17 |
Morphometrical | 0.100 | 0.017 | 0.320 | 0.721 | 0.097 | 0.031 | 0.062 | 0.19 |
Geotechnical | 0.133 | 0.307 | 0.142 | 0.021 | 0.292 | 0.094 | 0.558 | 0.22 |
Land cover | 0.004 | 0.022 | 0.005 | 0.015 | 0.014 | 0.010 | 0.062 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrzypczak, I.; Kokoszka, W.; Zientek, D.; Tang, Y.; Kogut, J. Landslide Hazard Assessment Map as an Element Supporting Spatial Planning: The Flysch Carpathians Region Study. Remote Sens. 2021, 13, 317. https://doi.org/10.3390/rs13020317
Skrzypczak I, Kokoszka W, Zientek D, Tang Y, Kogut J. Landslide Hazard Assessment Map as an Element Supporting Spatial Planning: The Flysch Carpathians Region Study. Remote Sensing. 2021; 13(2):317. https://doi.org/10.3390/rs13020317
Chicago/Turabian StyleSkrzypczak, Izabela, Wanda Kokoszka, Dawid Zientek, Yongjing Tang, and Janusz Kogut. 2021. "Landslide Hazard Assessment Map as an Element Supporting Spatial Planning: The Flysch Carpathians Region Study" Remote Sensing 13, no. 2: 317. https://doi.org/10.3390/rs13020317