Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Meteorological Data
2.2.2. Land Surface Characterization Data
2.2.3. Remote Sensing Data
2.3. Method
2.3.1. Model Introduction
2.3.2. Model Implementation and Verification
2.3.3. Attribution of ETa to Climate Change
3. Results
3.1. Spatial-Temporal Variation of Actual ET
3.2. Attribution of Actual ET
3.2.1. Attribution of Actual ET Change to Climate Change and Vegetation Greening
3.2.2. Contribution of Land-Use Changes to ETa
4. Discussion
4.1. Impact of Climate Change and Vegetation Greening on ETa
4.2. Variation in Available Water Resources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Treatment | Description |
---|---|
f(con) | Simulation with the 1982–1990 mean climatology, atmospheric CO2 concentration and vegetation dynamics |
f(T) | Temperature varies according to the ISIMIP records; other variables vary according to control conditions |
f(P) | Precipitation varies according to the ISIMIP records; other variables vary according to control conditions |
f(H) | Relative humidity varies according to the ISIMIP records; other variables vary according to control conditions |
f(R) | Longwave downwelling radiation and shortwave downwelling radiation vary according to the ISIMIP records; other variables vary according to control conditions |
f(W) | Wind speed varies according to the ISIMIP records; other variables vary according to control conditions |
f(LAI) | The LAI varies according to the GLASS records; other variables vary according to control conditions |
f(C) | Atmospheric CO2 concentration varies according to the NOAA ESRL records; other variables vary according to control conditions |
f(C_T) | CO2 concentration and temperatures vary; other variables vary according to control conditions |
f(C_P) | CO2 concentration and precipitation vary; other variables vary according to control conditions |
f(C_H) | CO2 concentration and relative humidity vary; other variables vary according to control conditions |
f(C_R) | CO2 concentration and radiation vary; other variables vary according to control conditions |
f(C_W) | CO2 concentration and wind speed vary; other variables vary according to control conditions |
f(C_V) | CO2 concentration and the LAI vary; other variables vary according to control conditions |
f(LAI_T) | LAI and temperatures vary; other variables vary according to control conditions |
f(LAI_P) | LAI and precipitation vary; other variables vary according to control conditions |
f(LAI_H) | LAI and temperatures vary; other variables vary according to control conditions |
f(LAI_R) | LAI and radiation vary; other variables vary according to control conditions |
f(LAI_W) | LAI and wind speed vary; other variables vary according to control conditions |
f(T_P) | Temperature and precipitation vary; other variables vary according to control conditions |
f(T_H) | Temperature and relative humidity vary; other variables vary according to control conditions |
f(T_R) | Temperature and radiation vary; other variables vary according to control conditions |
f(T_W) | Temperature and wind speed vary; other variables vary according to control conditions |
f(P_H) | Precipitation and relative humidity vary; other variables vary according to control conditions |
f(P_R) | Precipitation and radiation vary; other variables vary according to control conditions |
f(P_W) | Precipitation and wind speed vary; other variables vary according to control conditions |
f(H_R) | Relative humidity and radiation vary; other variables vary according to control conditions |
f(H_W) | Relative humidity and wind speed vary; other variables vary according to control conditions |
f(R_W) | Radiation and wind speed vary; other variables vary according to control conditions |
f(all) | All variables vary |
References
- Arias, M.E.; Cochrane, T.A.; Norton, D.; Killeen, T.J.; Khon, P. The Flood Pulse as the Underlying Driver of Vegetation in the Largest Wetland and Fishery of the Mekong Basin. Ambio 2013, 42, 864–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Piao, S.; Lin, X.; Yin, G.; Peng, S.; Ciais, P.; Myneni, R.B. Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models. Environ. Res. Lett. 2012, 7, 14026. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, T.; Zhou, F.; Ciais, P.; Mao, J.; Shi, X.; Piao, S. A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009. J. Geophys. Res. Atmos. 2014, 119, 1186–1202. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; De Noblet-Ducoudre, N.; Labat, D.; Zaehle, S. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA 2007, 104, 15242–15247. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E.; Wild, M.; Liang, S. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results. J. Geophys. Res. 2010, 115, D20113. [Google Scholar] [CrossRef] [Green Version]
- Felzer, B.; Cronin, T.; Melillo, J.; Kicklighter, D.; Schlosser, C. Importance of carbon–nitrogen interactions and ozone on eco-system hydrology during the 21st century. J. Geophys. Res. 2009, 114, G01020. [Google Scholar]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global In-ventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- Zeng, Z.; Peng, L.; Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 2018, 33, 9–25. [Google Scholar] [CrossRef]
- Shi, X.; Mao, J.; Thornton, P.E.; Huang, M. Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model. Environ. Res. Lett. 2013, 8, 024012. [Google Scholar] [CrossRef]
- Mao, J.; Fu, W.; Shi, X.; Ricciuto, D.M.; Fisher, J.B.; Dickinson, R.E.; Wei, Y.; Shem, W.; Piao, S.; Wang, K.; et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ. Res. Lett. 2015, 10, 094008. [Google Scholar] [CrossRef]
- Fan, H.; He, D. Temperature and Precipitation Variability and Its Effects on Streamflow in the Upstream Regions of the Lancang–Mekong and Nu–Salween Rivers. J. Hydrometeorol. 2015, 16, 2248–2263. [Google Scholar] [CrossRef]
- Hapuarachchi, H.A.P.; Takeuchi, K.; Zhou, M.; Kiem, A.S.; Georgievski, M.; Magome, J.; Ishidaira, H. Investigation of the Mekong River basin hydrology for 1980–2000 using the YHyM. Hydrol. Process. 2008, 22, 1246–1256. [Google Scholar] [CrossRef]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nat. Cell Biol. 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Delgado, J.; Merz, B.; Apel, H. Flood trends and variability in the Mekong River. Hydrol. Earth Syst. Sci. 2010, 11, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Bell, A.R.; Anchukaitis, K.J.; Buckley, B.M. Snow cover and precipitation impacts on dry season streamflow in the Lower Mekong Basin. J. Geophys. Res. Space Phys. 2012, 117, 16116. [Google Scholar] [CrossRef]
- Lacombe, G.; Pierret, A.; Hoanh, C.T.; Sengtaheuanghoung, O.; Noble, A.D. Conflict, migration and land-cover changes in Indochina: A hydrological assessment. Ecohydrology 2010, 3, 382–391. [Google Scholar] [CrossRef]
- Haddeland, I.; Lettenmaier, D.P.; Skaugen, T. Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol. 2006, 324, 210–223. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y. Effect of irrigation water withdrawals on water and energy balance in the Mekong River Basin using an improved VIC land surface model with fewer calibration parameters. Agric. Water Manag. 2015, 159, 92–106. [Google Scholar] [CrossRef]
- Huo, A.; Yang, L.; Luo, P.; Cheng, Y.; Peng, J.; Nover, D. Influence of landfill and land use scenario on runoff, evapotranspiration, and sediment yield over the Chinese Loess Plateau. Ecol. Indic. 2021, 121, 107208. [Google Scholar] [CrossRef]
- Şen, Ö.L.; Bozkurt, D.; Vogler, J.B.; Fox, J.; Giambelluca, T.W.; Ziegler, A.D. Hydro-climatic effects of future land-cover/land-use change in montane mainland southeast Asia. Clim. Chang. 2012, 118, 213–226. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Huang, H.; Wu, S.; Liu, G. Land use and climate changes and their impacts on runoff in the yarlung zangbo river basin, China. Land Degrad. Dev. 2012, 25, 203–215. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Hanasaki, N.; Koirala, S.; Cho, J.; Yeh, P.J.F.; Kim, H.; Kanae, S.; Oki, T. Incorporating anthropogenic water reg-ulation modules into a land surface model. J. Hydrometeorol. 2012, 13, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Richard, M.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies; IPCC ExperT Meeting Report; Intergovernmental Panel on Climate Change Secretariat (IPCC): Noordwijkerhout, The Netherlands, 2007. [Google Scholar]
- Kite, G.W. Modelling the Mekong: Hydrological simulation for environmental impact studies. J. Hydrol. 2001, 253, 1–13. [Google Scholar] [CrossRef]
- Weedon, G.P.; Gomes, S.S.; Viterbo, P.P.; Shuttleworth, W.J.; Blyth, E.E.; Österle, H.H.; Adam, J.C.; Bellouin, N.N.; Boucher, O.O.; Best, M.M. Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evapora-tion over Land during the Twentieth Century. J. Hydrometeor. 2011, 12, 823–848. [Google Scholar] [CrossRef] [Green Version]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.A.S.S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.A.; Kenyon, R.V.; Troxel, D.E. Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med. Imaging 1983, 2, 31–39. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote. Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 04531. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Lin, Z. Evaluation of an ecosystem model for a wheat–maize double cropping system over the North China Plain. Environ. Model. Softw. 2012, 32, 61–73. [Google Scholar] [CrossRef]
- Mo, X.; Chen, X.; Hu, S.; Liu, S.; Xia, J. Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: A case study in the North China Plain. Hydrol. Earth Syst. Sci. 2017, 21, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Mueller, B. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 3707–3720. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapo-transpiration from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Tian, H.; Shree, R.S.D.; Yang, Q.; Yang, J.; Lu, C.; Tao, B.; Ren, W.; Ouyang, Z. Responses of global terrestrial evapo-transpiration to climate change and increasing atmospheric CO2 in the 21st century. Earth’s Future 2015, 3, 15–35. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Prueger, J.H.; Neale, C.M.; Jackson, T.J. Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions. J. Hydrometeorol. Spec. Sect. 2005, 6, 878–891. [Google Scholar] [CrossRef]
- Sellers, P.J.; Los, S.O.; Tucker, C.J.; Justice, C.O.; Dazlich, D.A.; Collatz, G.J.; Randall, D.A. A revised land surface parame-terization (SiB2) for atmospheric GCMs. Part II. The generation of global fields of terrestrial biophysical parameters from sat-ellite data. J. Clim. 1996, 9, 706–737. [Google Scholar] [CrossRef] [Green Version]
- Eagleson, P.S. Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase. Water Resour. Res. 1978, 14, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 2001, 40, 1933–1951. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L.; Reifsnyder, W.E. Principles of Environmental Physics. Phys. Today 1974, 27, 51–52. [Google Scholar] [CrossRef]
- Kustas, W.P.; Daughtry, C.S. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric. For. Meteorol. 1990, 49, 205–223. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Lin, Z.; Zhao, W. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. J. Hydrol. 2004, 285, 125–142. [Google Scholar] [CrossRef]
- Stein, U.; Alpert, P. Factor Separation in Numerical Simulations. J. Atmospheric Sci. 1993, 50, 2107–2115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef] [PubMed]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Van Niel, T.G. Ecohydrology bearings–Invited commentary less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speed. Ecohydrology 2012, 5, 381–388. [Google Scholar] [CrossRef]
- Liu, Z.F.; Wang, R.; Yao, Z. Climate change and its impact on water availability of large international rivers over the main-land Southeast Asia. Hydrol. Process. 2018, 32, 3966–3977. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China. J. Geophys. Res. Space Phys. 2011, 116, 02107. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Feng, Q.; Li, C.; Si, J.; Wen, X.; Yin, Z. Detecting climate variability impacts on reference and actual evapotranspira-tion in the Taohe River Basin, NW China. Hydrol. Res. 2017, 48, 596–612. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Zeng, R.; Cai, X. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors. Adv. Water Resour. 2015, 79, 51–60. [Google Scholar] [CrossRef]
- Mahowald, N.; Lo, F.; Zheng, Y.; Harrison, L.; Funk, C.; Lombardozzi, D. Leaf Area Index in Earth System Models: Evaluation and projections. Earth Syst. Dyn. Discuss. 2015, 6, 761–818. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed changes in flow regimes in the Mekong River basin. J. Hydrol. 2017, 551, 217–232. [Google Scholar] [CrossRef]
- Lu, X.X.; Siew, R.Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: Possible impacts of the Chinese dams. Hydrol. Earth Syst. Sci. 2006, 10, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, T.A.; Arias, M.E.; Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 2014, 18, 4529–4541. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, H.; Johnston, R.; Solieng, M. Mekong river water: Will river flows meet future agriculture needs in the lower Mekong basin? Water Agric. 2004, 116, 86–104. [Google Scholar]
- Ngan, L.T.; Bregt, A.K.; van Halsema, G.E.; Hellegers, P.J.G.J.; Nguyen, L. Interplay between land-use dynamics and changes in hydrological regime in the Vietnamese Mekong Delta. Land Use Policy 2018, 73, 269–280. [Google Scholar]
- Mekong River Commission (MRC). Regional Irrigation Sector Review for Joint Basin Planning Process; MRC: Vientiane, Laos, 2009; p. 59. [Google Scholar]
WB | EBF | MF | SV | GL | WL | CL | Urb | CL/NV | |
---|---|---|---|---|---|---|---|---|---|
WB | 75.24 | 2.25 | 3.67 | 0.97 | 0.48 | 5.80 | 9.50 | 0.01 | 2.08 |
EBF | 0.04 | 86.81 | 0.68 | 7.73 | 0.13 | 0.34 | 0.30 | 0.00 | 3.95 |
MF | 0.27 | 18.55 | 55.67 | 16.38 | 3.30 | 0.81 | 1.27 | 0.00 | 3.76 |
SV | 0.12 | 8.37 | 6.46 | 53.99 | 2.23 | 0.68 | 2.29 | 0.00 | 25.85 |
GL | 0.19 | 0.16 | 1.53 | 2.30 | 88.25 | 1.28 | 2.14 | 0.00 | 4.14 |
WL | 1.70 | 11.14 | 4.97 | 4.78 | 0.62 | 60.26 | 11.82 | 0.11 | 4.60 |
CL | 0.10 | 1.18 | 1.30 | 2.75 | 3.45 | 3.84 | 54.67 | 0.00 | 32.71 |
Urb | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.66 | 0.00 | 99.28 | 0.00 |
CL/NV | 0.08 | 5.42 | 0.94 | 6.85 | 1.52 | 0.70 | 13.41 | 0.00 | 71.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Mo, X. Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model. Remote Sens. 2021, 13, 303. https://doi.org/10.3390/rs13020303
Hu S, Mo X. Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model. Remote Sensing. 2021; 13(2):303. https://doi.org/10.3390/rs13020303
Chicago/Turabian StyleHu, Shi, and Xingguo Mo. 2021. "Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model" Remote Sensing 13, no. 2: 303. https://doi.org/10.3390/rs13020303
APA StyleHu, S., & Mo, X. (2021). Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model. Remote Sensing, 13(2), 303. https://doi.org/10.3390/rs13020303