Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Multi-Source Land Cover Data Fusion and Correction Method
2.3.1. Unified Classification System for Multi-Source Land Cover Products
2.3.2. Spatial Consistency Analysis
2.3.3. Improved Dempster-Shafer Evidence Theory
Construction of the Basic Probability Function
Evidence Synthesis
2.3.4. Data Comparison and Accuracy Verification
Accuracy Verification
Similarity Analysis of Land Cover Type Area
2.3.5. Confusion Analysis
3. Results and Analysis
3.1. Accuracy Verification Based on High-Resolution Image Plots
3.2. Accuracy Verification Based on Land Cover Statistics
3.3. Analysis of Land Cover Characteristics in Central Asia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Xiao, P.; Feng, X.; Li, H.; Chang, X.; Feng, W. Comparison and assessment of large-scale land cover datasets in China and adjacent regions. J. Remote Sens. 2014, 18, 453–475. (In Chinese) [Google Scholar] [CrossRef]
- Zubaida, M.; Xia, J.; Polat, M.; Zhang, R. Land use and landscape pattern changes in the middle reaches of the Keriya River. Acta Ecol. Sin. 2019, 39, 2322–2330. (In Chinese) [Google Scholar]
- Suess, S.; Linden, S.; Okujeni, A.; Griffiths, P.; Schwieder, M.; Hostert, P. Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling. Remote Sens. Environ. 2018, 219, 353–364. [Google Scholar] [CrossRef]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for using remote sensing to estimate carbon fluxes across northern peatlands—A review. Sci. Total Environ. 2018, 615, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Q.; Dai, Z.; Huang, M.; Yan, H. Agreement analysis of multi-sensor satellite remote sensing derived land cover products in the Europe Continent. Geogr. Res. 2015, 34, 1839–1852. (In Chinese) [Google Scholar]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Lai, C.; Yan, M.; Du, W.; Hu, Y. The Variations and Causes of Grassland Distribution in Kazakhstan from the Global Land Cover Datasets. J. Geo-Inf. Sci. 2019, 21, 372–383. (In Chinese) [Google Scholar]
- Hou, W.; Hou, X. Data Fusion and Accuracy Analysis of Multi-Source Land Use/Land Cover Datasets along Coastal Areas of the Maritime Silk Road. Int. J. Geo-Inf. 2019, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Yadav, K.; Congaltion, R.G. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sens. 2018, 10, 1800. [Google Scholar] [CrossRef] [Green Version]
- Lapini, A.; Pettinato, S.; Santi, E.; Paloscia, S.; Fontanelli, G.; Garzelli, A. Comparison of Machine Learning Methods Applied to SAR Images for Forest Classification in Mediterranean Areas. Remote Sens. 2020, 12, 369. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Luo, Q.; Xu, Z. Consistency of Land Cover Data Derived from Remote Sensing in Xinjiang. J. Geo-Inf. Sc. 2019, 21, 427–436. (In Chinese) [Google Scholar]
- Dai, Z.; Hu, Y.; Zhang, Q. Agreement Analysis of Multi-source Land Cover Products Derived from Remote Sensing in South America. Remote Sens. Inf. 2017, 32, 137–148. (In Chinese) [Google Scholar]
- Kuenzer, C.; Leinenkugel, P.; Vollmuth, M.; Dech, S. Comparing global land-cover products—Implications for geoscience applications: An investigation for the trans-boundary Mekong Basin. Int. J. Remote Sens. 2014, 35, 2752–2779. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, M. Data fusion and accuracy evaluation of multi-source global land cover datasets. Acta Geogr. Sin. 2018, 73, 2223–2235. (In Chinese) [Google Scholar]
- Fritz, S.; You, L.; Bun, A.; See, L.; McCallum, I.; Schill, C.; Perger, C.; Liu, J.; Hansen, M.; Obersteiner, M. Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. Geophys. Res. Lett. 2011, 38, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Dmitry, S.; Ian, M.; Anatoly, S.; Steffen, F.; Florian, K.; Michael, O. A new hybrid land cover dataset for Russia: A methodology for integrating statistics, remote sensing and in situ information. J. Land Use Sci. 2011, 6, 245–259. [Google Scholar]
- Lu, M.; Wu, W.; You, L.; Chen, D.; Zhang, L.; Yang, P.; Tang, H. A Synergy Cropland of China by Fusing Multiple Existing Maps and Statistics. Sensors 2017, 17, 1613. [Google Scholar] [CrossRef] [Green Version]
- Dempster, A.P. Upper and Lower Probabilities Induced by a Multivalued Mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G.A. A Mathematical Theory of Evidence. Technometrics 1978, 20, 106. [Google Scholar]
- Luo, Z.; Deng, Y. A Matrix Method of Basic Belief Assignment’s Negation in Dempster-Shafer Theory. IEEE Trans. Fuzzy Syst. 2020, 28, 2270–2276. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Lu, L. China Land Cover Classification at 1 km Spatial Resolution Based on a Multi-source Data Fusion Approach. Adv. Earth Sci. 2009, 24, 192–203. (In Chinese) [Google Scholar]
- Song, H.; Zhang, X. Precision analysis and validation of multi-sources landcover products derived from remote sensing in China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 207–214. (In Chinese) [Google Scholar]
- Zadeh, L.A. Fuzzy Sets and Their Application to Pattern Classification and Clustering Analysis. Classif. Clust. 1977, 251–299. [Google Scholar]
- Luo, H.; Liu, C.; Wu, C.; Guo, X. Urban Change Detection Based on Dempster-Shafer Theory for Multitemporal Very High-Resolution Imagery. Remote Sens. 2018, 10, 980. [Google Scholar] [CrossRef] [Green Version]
- Koksalmis, E.; Kabak, Ö. Sensor fusion based on Dempster-Shafer theory of evidence using a large scale group decision making approach. Int. J. Intell. Syst. 2020, 35, 1126–1162. [Google Scholar] [CrossRef]
- Chen, X.; Bai, J.; Li, X.; Luo, G.; Li, J.; Li, B. Changes in land use/land cover and ecosystem services in Central Asia during 1990-2009. Curr. Opin. Environ. Sustain. 2013, 5, 116–127. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.M.; Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid Environ. 2005, 62, 300–308. [Google Scholar] [CrossRef]
- Fan, Z.; Li, S. Change pattern of land cover and its driving force since 2001 in the New Eurasian Continental Bridge Economic Corridor. Acta Ecol. Sin. 2019, 39, 5015–5027. (In Chinese) [Google Scholar]
- Li, J.; Chen, H.; Zhang, C.; Pan, T. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995–2035. Peerj 2019, 7, 7665–7686. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015, 170, 48–61. [Google Scholar] [CrossRef]
- Sun, B.; Chen, X.; Zhou, Q. Uncertainty Assessment of GLOBELAND30 Land Cover Data Set over Central Asia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1313–1317. [Google Scholar] [CrossRef]
- Han, Q.; Luo, G.; Bai, J.; Li, J.; Li, C.; Fan, B.; Wang, Y. Characteristics of land use and cover change in Central Asia in recent 30 years. Arid Land Geogr. 2012, 35, 909–918. (In Chinese) [Google Scholar]
- Perez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sens. 2017, 9, 1118. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Muller, J.; Kharbouche, S.; Woodgate, W. Intercomparison of Surface Albedo Retrievals from MISR, MODIS, CGLS Using Tower and Upscaled Tower Measurements. Remote Sens. 2019, 11, 644. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yu, L.; Feng, D.; Peng, D.; Li, C.; Huang, X.; Lu, H.; Gong, P. Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. Int. J. Remote Sens. 2019, 40, 6185–6202. [Google Scholar] [CrossRef]
- Jean-Francois, P.; Andrew, C.; Noel, G.; Alan, S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar]
- Corbane, C.; Pesaresi, M.; Politis, P.; Syrris, V.; Florczyk, A.J.; Soille, P.; Maffenini, L.; Burger, A.; Vasilev, V.; Rodriguez, D.; et al. Big earth data analytics on Sentinel-1 and Landsat imagery in support to global human settlements mapping. Big Earth Data 2017, 1, 118–144. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; Pesaresi, M.; Kemper, T.; Politis, P.; Florczyk, A.J.; Syrris, V.; Melchiorri, M.; Sabo, F.; Soille, P. Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data 2019, 3, 140–169. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, X.; Zhao, Y.; Yu, C.; Gong, P. Difficult to map regions in 30 m global land cover mapping determined with a common validation dataset. Int. J. Remote Sens. 2018, 39, 4077–4087. [Google Scholar] [CrossRef]
- Tateishi, R.; Uriyangqai, B.; Al-bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Hoan, N.T.; Shalaby, A.; Alsaaideh, B.; et al. Production of global land cover data—GLCNMO. Int. J. Digit. Earth 2011, 4, 22–49. [Google Scholar] [CrossRef]
- Alimujiang, K.; Tateishi, R. GLCNMO global urban mapping, validation and comparison with existing global urban maps. J. Remote Sens. Soc. Jpn. 2008, 28, 427–440. [Google Scholar]
- Hua, T.; Zhao, W.; Liu, Y.; Wang, S.; Yang, S. Spatial Consistency Assessments for Global Land-Cover Datasets: A Comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 2018, 10, 1846. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, Y.; Liu, L.; Li, L.; Qi, W. The spatial local accuracy of land cover datasets over the Qiangtang Plateau, High Asia. J. Geogr. Sci. 2019, 29, 1841–1858. [Google Scholar] [CrossRef] [Green Version]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Raucoules, D.; De Michele, M.; Aunay, B. Landslide displacement mapping based on ALOS-2/PALSAR-2 data using image correlation techniques and SAR interferometry. Application to Salazie Circle landslides (La Réunion Island). Geocarto Int. 2020, 35, 113–127. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Li, X.; Li, C.; Zhao, Y.; Gong, P. A multi-resolution global land cover dataset through multisource data aggregation. Sci. China Earth Sci. 2014, 57, 2317–2329. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Q.; Ye, X.; Gu, W. A new combination rules of evidence theory. Acta Electron. Sin. 2000, 8, 117–119. (In Chinese) [Google Scholar]
- Zhang, X. Evaluation of Ecological Carrying Capacity in Central Asia and Mongolia Based on MODIS Satellite Data. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2018. [Google Scholar]
- Louise, L.; Audrey, J.; Bégué, A.; Danny, L.S.; Bernardin, Z. How Reliable is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes? Remote Sens. 2014, 6, 8541–8564. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Hoyos, A.; García-Haro, F.J.; San-Miguel-Ayanz, J. A methodology to generate a synergetic land-cover map by fusion of different land-cover products. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 72–87. [Google Scholar] [CrossRef]
- Li, K.; Xu, E. Cropland data fusion and correction using spatial analysis techniques and the Google Earth Engine. GISci. Remote Sens. 2020, 57, 1026–1045. [Google Scholar] [CrossRef]
- Song, X.; Huang, C.; Townshend, J. Improving global land cover characterization through data fusion. Geo-Spat. Inf. Sci. 2017, 20, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Ruan, H.; Yu, J. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015. Acta Geogr. Sin. 2019, 74, 1292–1304. [Google Scholar]
- Hu, Y.; Hu, Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine. Remote Sens. 2019, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Perez-Hoyos, A.; Udias, A.; Rembold, F. Integrating multiple land cover maps through a multi-criteria analysis to improve agricultural monitoring in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102064. [Google Scholar] [CrossRef]
- Vancutsem, C.; Marinho, E.; Kayitakire, F.; See, L.; Fritz, S. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sens. 2013, 5, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, X.; Baiocchi, G.; Casazza, M.; Meng, F.; Cai, Y.; Hao, Y.; Wu, F.; Yang, Z. On the accuracy of official Chinese crop production data: Evidence from biophysical indexes of net primary production. Proc. Natl. Acad. Sci. USA 2020, 117, 25434–25444. [Google Scholar] [CrossRef]
Product | Source | Sensors | Classification Method | Resolution Ratio | Overall Accuracy | Classification System |
---|---|---|---|---|---|---|
CCI-LC | ESA | MERIS FR/RR SPOT-VGT AVHRR PROBA-V | Neural networks | 300 m | 71.70% | CCI-LC(37) |
CGLS | ECJRC | PROBA-V | Random forest | 100 m | 80.10% | UN-LCCS(22) |
FROM-GLC | Tsinghua University, China | TM ETM+ | Support vector machine, random forest | 30 m | 64.92% | FROM-GLC(28) |
GLCNMO | ISCGM | MODIS | Decision tree | 500 m | 74.80% | FAO-LCCS(20) |
MCD12Q | Boston University | MODIS | Decision tree, neural network | 500 m | 71.60% | IGBP(17) |
GFSAD30 | USGS | MODIS | Machine learning | 30 m | 94.80% | |
PALSAR | JAXA | PALSAR | Supervised classification | 25 m | 94.81% | |
GSWD | ECJRC | TM ETM+ OLI | Supervised classification | 30 m | 97.45% | |
GHS-BUILT | ECJRC | TM ETM+ OLI | Machine learning | 30 m | 83% |
CCI-LC [32] | UN-LCCS [33,34] | FAO-LCCS [40,41,42,43] | IGBP [42,43,44] | FROM-GLC [38,39] | |
---|---|---|---|---|---|
Cropland | 10 Cropland, rainfed 20 Cropland, irrigated or post-flooding 30 Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) | 40 Cultivated and managed vegetation/agriculture (cropland) | 10 Cropland and paddy field 12 Cropland/other vegetation mosaic | 10 Croplands 13 Cropland/natural vegetation mosaics | 11 Rice paddy 12 Greenhouse 13 Other cropland 14 Orchard 15 Bare farmland |
Forest | 50 Tree cover, broadleaved, evergreen, closed to open (>15%) 60 Tree cover, broadleaved, deciduous, closed to open (>15%) 70 Tree cover, needle-leaved, evergreen, closed to open (>15%) 80 Tree cover, needle-leaved, deciduous, closed to open (>15%) 90 Tree cover, mixed leaf type (broadleaved and needle-leaved) 100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%) | 111 Closed (>70%) evergreen needle leaf 112 Closed to open (>70%) evergreen, broadleaf 113 Closed (>70%) deciduous needle leaf 114 Closed (>70%) deciduous broadleaf 115 Closed forest, mixed 116 Closed forest, unknown 121 Open (15–70%) evergreen needle leaf 122 Open (15–70%) evergreen broadleaf 123 Open (15–70%) deciduous needle-leaf 124 Open (15–70%) deciduous broadleaf 125 Open forest, mixed 126 Open forest, unknown | 20 Open (40–(20–10)%) trees (Woodland) 21 Broadleaved evergreen closed to open (>40%) trees 22 Broadleaved deciduous closed to open (>40%) trees 23 Needle-leaved evergreen closed to open (>40%) trees 24 Needle leaved deciduous closed to open (>40%) trees 25 Broadleaved/ needle-leaved closed to open trees | 20 Woody savannas 21 Evergreen broadleaf forests 22 Deciduous broadleaf forests 23 Evergreen needle-leaf forests 24 Deciduous needle-leaf forests 25 Mixed forests | 21 Broadleaf, leaf-on 22 Broadleaf, leaf-off 23 Needle-leaf, leaf-on 24 Needle-leaf, leaf-off 25 Mixed leaf, leaf-on 26 Mixed leaf, leaf-off |
Grassland | 110 Mosaic herbaceous cover (>50%)/tree and shrub (<50%) 130 Grassland | 30 Herbaceous vegetation (tree and shrub coverage <10%) | 30 Closed to open herbaceous vegetation, single layer | 30 Grasslands | 31 Pasture 32 Natural grassland 33 Grassland, leaf-off |
Shrubland | 120 Shrubland | 20 Shrubs (perennial woody plant without clear main stem, height <5 m) | 40 Closed to open shrubland (thicket) | 40 Closed/open shrublands, savannas | 41 Shrubland, leaf-on 42 Shrubland, leaf-off |
Water | 210 Water bodies | 80 Permanent water bodies 200 Open sea | 50 Artificial/ natural waterbodies | 50 Water bodies | 60 Water |
Artificial surfaces | 190 Urban areas | 50 Urban/built up | 60 Artificial surfaces and associated area(s) | 60 Urban and built-up lands | 80 Impervious surface |
Bare land | 200 Bare areas 150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) | 60 Bare/sparse vegetation (tree coverage <10%) | 70 Herbaceous with sparse tree/shrub, sparse vegetation | 70 Barren sparse vegetation | 90 Bareland |
Permanent snow and ice | 220 Permanent snow and ice | 70 Snow and ice | 19Perennial snow/ice | 80 Permanent snow and ice | 101 Snow 102 Ice |
Wetland | 160 Tree cover, flooded, fresh or brackish water 170 Tree cover, flooded, saline water 180 Shrub or herbaceous cover, flooded, fresh/saline/ brackish water | 90 Herbaceous wetland | 100 Mangrove, Wetland | 100 Permanent wetlands | 51 Marshland 52 Mudflat 53 Marshland, leaf-off |
Vegetation/Non-Vegetation | Land/Water | Artificial/Natural | Life Forms | ||||||
---|---|---|---|---|---|---|---|---|---|
Vegetation | Non-vegetation | Land | Water | Artificial | Natural | Bare land, glacial snow, waters, construction land | Forest | Shrub | Grass |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 3 |
Data | CCI-LC | CGLS | FROM-GLC | GLCNMO | MCD12Q | CON | DS | CONDS |
---|---|---|---|---|---|---|---|---|
Overall accuracy | 61.24% | 76.27% | 66.53% | 62.01% | 74.39% | 79.00% | 83.86% | 85.32% |
kappa coefficient | 0.51 | 0.67 | 0.53 | 0.52 | 0.62 | 0.70 | 0.77 | 0.80 |
CCI-LC | CGLS | FROM-GLC | GLCNMO | MCD12Q | CON | DS | CONDS | |
---|---|---|---|---|---|---|---|---|
Cropland | 1.000 ** | 0.994 ** | 0.895 | 0.997 ** | 0.980 ** | 1.000 ** | 0.990 ** | 1.000 ** |
Forest | 0.994 ** | 1.000 ** | 0.999 ** | 0.992 ** | 0.997 ** | 0.997 ** | 0.973 ** | 1.000 ** |
Grassland | 0.978 ** | 0.993 ** | 0.990 ** | 0.986 ** | 0.990 ** | 0.998 ** | 0.992 ** | 0.992 ** |
Water | 0.738 | 0.765 | 0.754 | 0.782 | 0.845 | 0.995 ** | 0.821 | 0.859 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Xu, E. Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia. Remote Sens. 2021, 13, 244. https://doi.org/10.3390/rs13020244
Liu K, Xu E. Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia. Remote Sensing. 2021; 13(2):244. https://doi.org/10.3390/rs13020244
Chicago/Turabian StyleLiu, Keling, and Erqi Xu. 2021. "Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia" Remote Sensing 13, no. 2: 244. https://doi.org/10.3390/rs13020244
APA StyleLiu, K., & Xu, E. (2021). Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia. Remote Sensing, 13(2), 244. https://doi.org/10.3390/rs13020244