The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Typhoon Soudelor
2.3. GOCI Satellite Images
2.4. Quantitative Retrieval Algorithm of SS
2.5. Temporal Decay of SS after Typhoon
3. Results
3.1. Spatial–Temporal Analysis of SS Pre- and Post-Typhoon Soudelor
3.2. and
3.3. and
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snelgrove, P.V.R.; Henry Blackburn, T.; Hutchings, P.A.; Alongi, D.M.; Frederick Grassle, J.; Hummel, H.; King, G.; Koike, I.; Lambshead, P.J.D.; Ramsing, N.B.; et al. The importance of marine sediment biodiversity in ecosystem processes. Ambio 1997, 26, 578–583. [Google Scholar]
- Ouillon, S. Why and how do we study sediment transport? Focus on coastal zones and ongoing methods. Water 2018, 10, 390. [Google Scholar] [CrossRef]
- Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; et al. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience Remote Sens. 2020, 57, 271–286. [Google Scholar] [CrossRef]
- Volpe, V.; Silvestri, S.; Marani, M. Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 2011, 115, 44–54. [Google Scholar] [CrossRef]
- Ody, A.; Doxaran, D.; Vanhellemont, Q.; Nechad, B.; Novoa, S.; Many, G.; Bourrin, F.; Verney, R.; Pairaud, I.; Gentili, B. Potential of high spatial and temporal ocean color satellite data to study the dynamics of suspended particles in a micro-tidal river plume. Remote Sens. 2016, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Fang, J.; Yin, X.; Li, H.; Hu, W.; Chen, J. Impact of Typhoon Morakot on suspended matter size distributions on the East China Sea inner shelf. Cont. Shelf Res. 2015, 101, 47–58. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Chen, C.-T.A.; Hsin, Y.-C.; Wu, C.-R.; Zhai, W.; Liu, Z.; Gong, F. Satellite views of the episodic terrestrial material transport to the southern Okinawa Trough driven by typhoon. J. Geophys. Res. Ocean. 2014, 119, 1706–1722. [Google Scholar] [CrossRef]
- Liu, J.; Cai, S.; Wang, S. Observations of strong near-bottom current after the passage of Typhoon Pabuk in the South China Sea. J. Mar. Syst. 2011, 87, 102–108. [Google Scholar] [CrossRef]
- Miles, T.; Seroka, G.; Kohut, J.; Schofield, O.; Glenn, S. Glider observations and modeling of sediment transport in Hurricane Sandy. J. Geophys. Res. Ocean. 2015, 120, 1771–1791. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, A.; Qiao, L.; Fang, J.; Chen, J. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang-Fujian coast, China. Cont. Shelf Res. 2012, 37, 92–100. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Qiao, L.; Xu, Y.; Yin, X.; He, J. Storm deposition layer on the Fujian coast generated by Typhoon Saola (2012). Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Huang, W.; Wang, H.; Li, D. Remote sensing assessment of sediment re-suspension during Hurricane Frances in Apalachicola Bay, USA. Remote Sens. Environ. 2009, 113, 2670–2681. [Google Scholar] [CrossRef]
- Li, Y.; Li, X. Remote sensing observations and numerical studies of a super typhoon-induce d suspende d se diment concentration variation in the East China Sea. Ocean Model. 2016, 104, 187–202. [Google Scholar] [CrossRef]
- Doxaran, D.; Lamquin, N.; Park, Y.J.; Mazeran, C.; Ryu, J.H.; Wang, M.; Poteau, A. Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens. Environ. 2014, 146, 36–48. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Yin, X.; Fang, J.; Hu, W.; Chen, J. Remote-sensing observations of Typhoon Soulik (2013) forced upwelling and sediment transport enhancement in the northern Taiwan Strait. Int. J. Remote Sens. 2015, 36, 2201–2218. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Zheng, B. Satellite views of cross-strait sediment transport in the Taiwan Strait driven by Typhoon Morakot (2009). Cont. Shelf Res. 2018, 166, 54–64. [Google Scholar] [CrossRef]
- Choi, J.K.; Park, Y.J.; Ahn, J.H.; Lim, H.S.; Eom, J.; Ryu, J.H. GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Ocean. 2012, 117, 1–10. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Lee, B.R.; Eom, J.; Moon, J.-E.; Ryu, J.-H. Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity. Remote Sens. Environ. 2014, 146, 24–35. [Google Scholar] [CrossRef]
- Moon, J.-E.; Ahn, Y.-H.; Ryu, J.-H.; Shanmugam, P. Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI). Korean J. Remote Sens. 2010, 26, 189–207. [Google Scholar]
- Ryu, J.H.; Han, H.J.; Cho, S.; Park, Y.J.; Ahn, Y.H. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Sci. J. 2012, 47, 223–233. [Google Scholar] [CrossRef]
- Moon, J.E.; Park, Y.J.; Ryu, J.H.; Choi, J.K.; Ahn, J.H.; Min, J.E.; Son, Y.B.; Lee, S.J.; Han, H.J.; Ahn, Y.H. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010–2011. Ocean Sci. J. 2012, 47, 261–277. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, X.H.; Paull, D.; Gao, J. Application of the Geostationary Ocean Color Imager to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. Remote Sens. 2016, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Yang, H.; Zhu, A.X.; Zhang, M.; Lü, H.; Huang, T.; Zou, J.; Li, Y. Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake. Int. J. Remote Sens. 2015, 36, 3859–3874. [Google Scholar] [CrossRef]
- Qiu, Z.; Zheng, L.; Zhou, Y.; Sun, D.; Wang, S.; Wu, W. Innovative GOCI algorithm to derive turbidity in highly turbid waters: A case study in the Zhejiang coastal area. Opt. Express 2015, 23, A1179. [Google Scholar] [CrossRef]
- Choi, J.-K.; Yang, H.; Han, H.-J.; Ryu, J.-H.; Park, Y.-J. Quantitative estimation of suspended sediment movements in coastal region using GOCI. J. Coast. Res. 2013, 165, 1367–1372. [Google Scholar] [CrossRef]
- Yang, H.; Choi, J.-K.; Park, Y.-J.; Han, H.-J.; Ryu, J.-H. Application of the Geostationary Ocean Color Imager (GOCI) to estimates of ocean surface currents. J. Geophys. Res. Ocean. 2014, 1022–1037. [Google Scholar] [CrossRef]
- Taiwan River Restotation Network the List of Central Rivers. Available online: http://trrn.wra.gov.tw/web/index-18.html (accessed on 26 April 2020).
- National Hurricane Centre Saffir-Simpson Hurricane Wind Scale. Wind Scale 2012, 1–2. Available online: http://www.nhc.noaa.gov/aboutsshws.php (accessed on 15 May 2020).
- Chen, W.B.; Lin, L.Y.; Jang, J.H.; Chang, C.H. Simulation of typhoon-induced storm tides and wind waves for the northeastern coast of Taiwan using a tide-surge-wave coupled model. Water 2017, 9, 549. [Google Scholar] [CrossRef]
- Typhoon Taiwan’s Typhoon Data Base. Available online: http://rdc28.cwb.gov.tw/TDB/ntdb/pageControl/typhoon?year=2015&num=201513&name=SOUDELOR&from_warning=tru (accessed on 31 March 2018).
- Soudelor Typhoon Soudelor Wiki. Available online: https://en.wikipedia.org/wiki/Typhoon_Soudelor (accessed on 24 April 2018).
- Soudelor, T. Deadly Typhoon Soudelor’s Rainfall Analyzed. Available online: https://pmm.nasa.gov/extreme-weather/deadly-typhoon-soudelors-rainfall-analyzed (accessed on 1 July 2020).
- Brockmann Consult L3/Binning Tool. Available online: http://www.brockmann-consult.de/beam/doc/help-4.8/binning/BinningAlgorithmDescription.html (accessed on 11 November 2018).
- Campbell, J.W.; Blaisdell, J.M.; Darzi, M. Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms. SeaWiFS Tech. Rep. Ser. 1995, 32, 80. [Google Scholar]
- Technologies, M. GDPS Ver.2.0 User’s Manual. 2018. Available online: http://kosc.kiost.ac.kr/eng/p30/kosc_p34.html (accessed on 10 November 2018).
- Milliman, J.D.; Lee, T.Y.; Huang, J.C.; Kao, S.J. Temporal and spatial responses of river discharge to tectonic and climatic perturbations: Choshui River, Taiwan, and Typhoon Mindulle (2004). Proc. Int. Assoc. Hydrol. Sci. 2015, 29, 11–14. [Google Scholar] [CrossRef]
- Chien, H.; Chiang, W.S.; Kao, S.J.; Liu, J.T.; Liu, K.K.; Liu, P.L.F. Sediment Dynamics observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait. Oceanography 2011, 24, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.W.; Chen, H.; Chen, Y.H.; Horng, M.J. Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Eng. Geol. 2008, 97, 32–41. [Google Scholar] [CrossRef]
- Chen, C.W.; Oguchi, T.; Hayakawa, Y.S.; Saito, H.; Chen, H.; Lin, G.W.; Wei, L.W.; Chao, Y.C. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan. Geomorphology 2018, 303, 540–548. [Google Scholar] [CrossRef]
- Hung, C.; Lin, G.-W.; Kuo, H.-L.; Zhang, J.-M.; Chen, C.-W.; Chen, H. Impact of an Extreme Typhoon Event on Subsequent Sediment Discharges and Rainfall-Driven Landslides in Affected Mountainous Regions of Taiwan. Geofluids 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Liu, W.C.; Chen, W.B.; Cheng, R.T.; Hsu, M.H. Modelling the impact of wind stress and river discharge on Danshuei River plume. Appl. Math. Model. 2008, 32, 1255–1280. [Google Scholar] [CrossRef]
- Water Resources Planning Institute, Water Resources Agency, Ministry of Economic Affairs. Available online: https://www.wrap.gov.tw/pro12.aspx?type=0201000000 (accessed on 23 March 2020). (In Chinese)
- Wang, Y.H.; Jan, S.; Wang, D.P. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuar. Coast. Shelf Sci. 2003, 57, 193–199. [Google Scholar] [CrossRef]
- Liu, J.; Emery, W.; Wu, X.; Li, M.; Li, C.; Zhang, L. Computing Coastal Ocean Surface Currents from MODIS and VIIRS Satellite Imagery. Remote Sens. 2017, 9, 1083. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chau, P.M.; Wang, C.-K.; Huang, A.-T. The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor. Remote Sens. 2021, 13, 194. https://doi.org/10.3390/rs13020194
Chau PM, Wang C-K, Huang A-T. The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor. Remote Sensing. 2021; 13(2):194. https://doi.org/10.3390/rs13020194
Chicago/Turabian StyleChau, Pham Minh, Chi-Kuei Wang, and An-Te Huang. 2021. "The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor" Remote Sensing 13, no. 2: 194. https://doi.org/10.3390/rs13020194
APA StyleChau, P. M., Wang, C. -K., & Huang, A. -T. (2021). The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor. Remote Sensing, 13(2), 194. https://doi.org/10.3390/rs13020194