Evaluation of the ABI/GOES-16 SST Product in the Tropical and Southwestern Atlantic Ocean
Abstract
:1. Introduction
Study Region
2. Data
2.1. Match-up Data Base (MDB)
2.1.1. PIRATA Project
2.1.2. PNBoia Project
2.2. Satellite SST
2.2.1. ABI GOES-16 SST
2.2.2. OSTIA SST Analysis
3. Methods
3.1. SSTsat (ABI) vs. SSTdepth (MDB)
3.2. SSTsat (ABI) vs. SSTfnd (OSTIA)
4. Results
4.1. SSTsat (ABI) vs. SSTdepth (MDB)
4.2. SSTsat (ABI) vs. SSTfnd (OSTIA)
5. Discussion
6. Conclusions and Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shutler, J.D.; Quartly, G.; Donlon, C.J.; Sathyendranath, S.; Platt, T.; Chapron, B.; Johannessen, J.A.; Girard-Ardhuin, F.; Nightingale, P.D.; Woolf, D.K.; et al. Progress in satellite remote sensing for studying physical processes at the ocean surface and its borders with the atmosphere and sea ice. Prog. Phys. Geogr. Earth Environ. 2016, 40, 215–246. [Google Scholar]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar]
- Lazarus, S.M.; Calvert, C.G.; Splitt, M.; Santos, P.; Sharp, D.W.; Blottman, P.F.; Spratt, S.M. Real-time, High-resolution, space-time analysis of sea surface temperatures from multiple platforms. Mon. Weather Rev. 2007, 135, 3158–3173. [Google Scholar]
- Le Traon, P.-Y.; Antoine, D.; Bentamy, A.; Bonekamp, H.; Breivik, L.A.; Chapron, B.; Corlett, G.; Dibarboure, G.; Digiacomo, P.; Donlon, C.; et al. Use of satellite observations for operational oceanography: Recent achievements and future prospects. J. Oper. Oceanogr. 2015, 8, S12–S27. [Google Scholar]
- Rodgers, C.D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. 1976, 14, 609. [Google Scholar]
- Liang, X.-M.; Ignatov, A.; Kihai, Y. Implementation of the Community Radiative Transfer Model in Advanced Clear-Sky Processor for Oceans and validation against nighttime AVHRR radiances. J. Geophys. Res. 2009, 114, 06112. [Google Scholar]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. Ocean. 1998, 103, 27999–28012. [Google Scholar]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 1985, 90, 11587. [Google Scholar]
- Kilpatrick, K.A.; Podestá, G.P.; Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. Ocean. 2001, 106, 9179–9197. [Google Scholar]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data. ISPRS J. Photogramm. Remote Sens. 2020, 166, 228–240. [Google Scholar]
- GHRSST Science Team. The Recommended GHRSST Data Specification (GDS) 2.0, Document Revision 4; GHRSST Project Office: Reading, UK, 2010; p. 123. [Google Scholar]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Pennybacker, M. Optimization of sensitivity of GOES-16 ABI sea surface temperature by matching satellite observations with L4 analysis. Remote Sens. 2019, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Merchant, C.J.; Embury, O.; le Borgne, P.; Bellec, B. Saharan dust in nighttime thermal imagery: Detection and reduction of related biases in retrieved sea surface temperature. Remote Sens. Environ. 2006, 104, 15–30. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.; et al. Global Ocean Data Assimilation Experiment (GODAE) High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). Bull. Am. Meteorol. Soc. 2007, 88, 8. [Google Scholar] [CrossRef]
- A (NOAA/NESDIS/STAR) Ignatov. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Sea Surface Temperature; NOAA/NESDIS/STAR: College Park, MD, USA, 2010. [Google Scholar]
- OSI SAF. Geostationary Sea Surface Temperature Product User Manual v1.9. SAF/OSI/CDOP3/MF/TEC/MA/181. 2018. Available online: http://www.osi-saf.org (accessed on 4 January 2021).
- Pezzi, L.P.; Souza, R.B.; Dourado, M.S.; Garcia, C.A.E.; Mata, M.M.; Silva-Dias, M.A.F. Ocean-atmosphere in situ observations at the Brazil-Malvinas Confluence region. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.R.; Pezzi, L.P.; Souza, R.B.; Santini, M.F.; Cunha, L.C.; Pacheco, F.S. First measurements of the ocean-atmosphere CO2 fluxes at the Cabo Frio upwelling system region, Southwestern Atlantic Ocean. Cont. Shelf Res. 2019, 181, 135–142. [Google Scholar] [CrossRef]
- Foltz, G.R.; Brandt, P.; Richter, I.; Rodríguez-Fonseca, B.; Hernandez, F.; Dengler, M.; Rodrigues, R.R.; Schmidt, J.O.; Yu, L.; Lefevre, N.; et al. The tropical atlantic observing system. Front. Mar. Sci. 2019, 6, 1–36. [Google Scholar]
- Marinha do Brasil. Programa Nacional De Boias—Pnboia-Plano Nacional De Trabalho; Marinha do Brasil: Brasilia, Brazil, 2017. [Google Scholar]
- Kodama, Y. Large-scale common features of subtropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ) Part I: Characteristics of subtropical frontal zones. J. Meteorol. Soc. Jpn. 1992, 70, 813–836. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Belém, A.L.; Marton, E.; Cataldi, M. Dynamics-based regression models for the South Atlantic Convergence Zone. Clim. Dyn. 2019, 52, 5527–5553. [Google Scholar] [CrossRef] [Green Version]
- Morel, X.; Lucas, M.A.; Santos, F.D. A Lagrangian study of the Brazil-Malvinas confluence: Lagrangian coherent structures and several lyapunov exponents. J. Oper. Oceanogr. 2014, 7, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Matano, R.P.; Palma, E.D.; Piola, A.R. The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation. Ocean Sci. 2010, 6, 983–995. [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.G.; Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 1991, 26, 1–73. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; le Gléau, H. MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Merchant, C.J.; le Borgne, P.; Roquet, H.; Marsouin, A. Sea surface temperature from a geostationary satellite by optimal estimation. Remote Sens. Environ. 2009, 113, 445–457. [Google Scholar] [CrossRef]
- le Borgne, P.; Roquet, H.; Merchant, C.J. Estimation of Sea Surface Temperature from the Spinning Enhanced Visible and Infrared Imager, improved using numerical weather prediction. Remote Sens. Environ. 2011, 115, 55–65. [Google Scholar] [CrossRef]
- François, C.; Brisson, A.; le Borgne, P.; Marsouin, A. Definition of a radiosounding database for sea surface brightness temperature simulations. Remote Sens. Environ. 2002, 81, 309–326. [Google Scholar] [CrossRef]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- OSI SAF. Global Sea Ice Concentration Reprocessing Product User Manual v 2.0; OSI SAF, 2015; p. 32. Available online: http://www.osi-saf.org (accessed on 4 January 2021).
- Lorenc, A.C.; Bell, R.S.; Macpherson, B. The Meteorological Office analysis correction data assimilation scheme. Q. J. R. Meteorol. Soc. 1991, 117, 59–89. [Google Scholar] [CrossRef]
- Martin, M.J.; Hines, A.; Bell, M.J. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Q. J. R. Meteorol. Soc. 2007, 133, 981–995. [Google Scholar] [CrossRef]
- Picart, S.S.; Marsouin, A. Geostationary Satellite Sea Surface Temperature Scientific Validation Report Meteosat SST: OSI-206-a GOES-East SST: OSI-207-a Meteosat Indian Ocean SST: OSI-IO-SST v1.0. 2018. Available online: http://www.osi-saf.org (accessed on 4 January 2021).
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.J.; Park, K.A.; Li, X.; Lee, E.Y. Sea surface temperature retrieval from the first Korean geostationary satellite COMS data: Validation and error assessment. Remote Sens. 2018, 10, 1916. [Google Scholar] [CrossRef] [Green Version]
- Marquis, J.W.; Bogdanoff, A.; Campbell, J.R.; Cummings, J.A.; Westphal, D.L.; Smith, N.J.; Zhang, J. Estimating infrared radiometric satellite sea surface temperature retrieval cold biases in the tropics due to unscreened optically thin cirrus clouds. J. Atmos. Ocean. Technol. 2017, 34, 355–373. [Google Scholar] [CrossRef]
- Stark, J.D.; Donlon, C.; O’Carroll, A.; Corlett, G. Determination of AATSR biases using the OSTIA SST analysis system and a matchup database. J. Atmos. Ocean. Technol. 2008, 25, 1208–1217. [Google Scholar] [CrossRef]
- Möller, O.O.; Piola, A.R.; Freitas, A.C.; Campos, E.J.D. The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont. Shelf Res. 2008, 28, 1607–1624. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Smale, D.A.; Moore, P.J.; Nencioli, F.; Miller, P.I.; Taylor, B.H.; Smyth, T.J.; Fishwick, J.; Yang, M. Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers. Remote Sens. 2018, 10, 925. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Guan, L.; Beggs, H.; Morgan, N.; Kurihara, Y.; Kachi, M. Comparison of Himawari-8 AHI SST with shipboard skin SST measurements in the Australian region. Remote Sens. 2020, 12, 1237. [Google Scholar] [CrossRef] [Green Version]
Night | Day | |||||||
---|---|---|---|---|---|---|---|---|
QL | N | RMSE | Bias | AD | N | RMSE | Bias | AD |
5 | 579 | 0.526 | −0.040 | 0.403 | 729 | 0.477 | 0.062 | 0.365 |
4 | 943 | 0.618 | 0.043 | 0.446 | 1160 | 0.561 | 0.073 | 0.420 |
3 | 806 | 0.602 | −0.008 | 0.450 | 938 | 0.546 | 0.121 | 0.426 |
3–5 | 2328 | 0.590 | 0.005 | 0.436 | 2827 | 0.536 | 0.086 | 0.408 |
Night | Day | |||||||
---|---|---|---|---|---|---|---|---|
QL | N | RMSE | Bias | AD | N | RMSE | Bias | AD |
5 | 259 | 0.408 | −0.013 | 0.290 | 344 | 0.441 | 0.094 | 0.308 |
4 | 81 | 0.817 | −0.102 | 0.577 | 134 | 0.847 | 0.071 | 0.565 |
3 | 40 | 1.050 | −0.123 | 0.737 | 69 | 1.149 | 0.344 | 0.851 |
3–5 | 380 | 0.612 | −0.044 | 0.398 | 547 | 0.682 | 0.120 | 0.439 |
SST1m (All Conditions) | SST1m (≥6 m.s−1) | |||||||
---|---|---|---|---|---|---|---|---|
QL | N | RMSE | Bias | AD | N | RMSE | Bias | AD |
5 | 42 | 0.226 | −0.046 | 0.162 | 15 | 0.116 | −0.027 | 0.092 |
4 | 259 | 0.328 | −0.031 | 0.254 | 84 | 0.288 | −0.010 | 0.227 |
3 | 401 | 0.437 | −0.086 | 0.315 | 124 | 0.452 | −0.087 | 0.310 |
3–5 | 702 | 0.390 | −0.063 | 0.284 | 223 | 0.382 | −0.054 | 0.264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, M.H.; Rudorff, N.; Aravéquia, J.A. Evaluation of the ABI/GOES-16 SST Product in the Tropical and Southwestern Atlantic Ocean. Remote Sens. 2021, 13, 192. https://doi.org/10.3390/rs13020192
Azevedo MH, Rudorff N, Aravéquia JA. Evaluation of the ABI/GOES-16 SST Product in the Tropical and Southwestern Atlantic Ocean. Remote Sensing. 2021; 13(2):192. https://doi.org/10.3390/rs13020192
Chicago/Turabian StyleAzevedo, Mayna Helena, Natália Rudorff, and José Antônio Aravéquia. 2021. "Evaluation of the ABI/GOES-16 SST Product in the Tropical and Southwestern Atlantic Ocean" Remote Sensing 13, no. 2: 192. https://doi.org/10.3390/rs13020192
APA StyleAzevedo, M. H., Rudorff, N., & Aravéquia, J. A. (2021). Evaluation of the ABI/GOES-16 SST Product in the Tropical and Southwestern Atlantic Ocean. Remote Sensing, 13(2), 192. https://doi.org/10.3390/rs13020192