Evaluating the Territorial Impact of Built-Up Area Expansion in the Surroundings of Bucharest (Romania) through a Multilevel Approach Based on Landsat Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
3.1. Spatial and Temporal Features of Built-Up Area Expansion
3.2. Comparison of Built-Up Area Expansion in a Medium-Scale Perspective
3.3. Identifying the Types of Built-Up Area Dynamics
3.4. Various Development Patterns of Built-Up Area at the Local Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global Urban Expansion Offsets Climate-Driven Increases in Terrestrial Net Primary Productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Urban Sprawl in Europe: The Ignored Challenge; EEA Report; European Environment Agency; Office for Official Publications of the European Communities: Copenhagen, Denmark; Luxembourg, 2006. [Google Scholar]
- European Environment Agency; Swiss Federal Office for the Environment (FOEN). Urban Sprawl in Europe: Joint EEA-FOEN Report; Publications Office: Luxembourg, 2016. [Google Scholar]
- Pichler-Milanović, N. Confronting Suburbanization in Ljubljana: From “Urbanization of the Countryside” to Urban Sprawl. In Confronting Suburbanization; Stanilov, K., Sýkora, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 65–96. [Google Scholar] [CrossRef]
- Larkin, A.; van Donkelaar, A.; Geddes, J.A.; Martin, R.V.; Hystad, P. Relationships between Changes in Urban Characteristics and Air Quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 2016, 50, 9142–9149. [Google Scholar] [CrossRef] [Green Version]
- Zaharia, L.; Ioana-Toroimac, G.; Cocoş, O.; Ghiţă, F.A.; Mailat, E. Urbanization Effects on the River Systems in the Bucharest City Region (Romania). Ecosyst. Health Sustain. 2016, 2, e01247. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Güneralp, B.; Huang, C.-W.; Seto, K.C.; You, M. Conservation Priorities to Protect Vertebrate Endemics from Global Urban Expansion. Biol. Conserv. 2018, 224, 290–299. [Google Scholar] [CrossRef]
- Matei, E.; Manea, G.; Cocoş, O.; Vijulie, I.; Tîrlă, L.; Bogan, E.; Tișcovschi, A. Sustainable Development as a Solution for Agriculture and Human Settlements Competition in Ilfov County. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference SGEM 2014, Sofia, Bulgaria, 19–25 June 2014; Volume 3, pp. 415–422. [Google Scholar] [CrossRef]
- Nae, M.; Dumitrache, L.; Suditu, B.; Matei, E. Housing Activism Initiatives and Land-Use Conflicts: Pathways for Participatory Planning and Urban Sustainable Development in Bucharest City, Romania. Sustainability 2019, 11, 6211. [Google Scholar] [CrossRef] [Green Version]
- Ianoș, I.; Merciu, F.C.; Merciu, G.; Zamfir, D.; Stoica, I.-V.; Vlăsceanu, G. Unclear Perspectives for a Specific Intra-Urban Space: Văcărești Lake Area (Bucharest City). Carpathian J. Earth Environ. Sci. 2014, 9, 215–224. [Google Scholar]
- Merciu, F.C.; Sîrodoev, I.; Merciu, G.; Zamfir, D.; Schvab, A.; Stoica, I.V.; Paraschiv, M.; Saghin, I.; Cercleux, A.L.; Văidianu, N.; et al. The “Văcărești Lake” Protected Area, a Neverending Debatable Issue? Carpathian J. Earth Environ. Sci. 2017, 12, 463–472. [Google Scholar]
- Louwagie, G.; European Environment Agency. Land Recycling in Europe: Approaches to Measuring Extent and Impacts. EEA Rep. 2016, 31, 51. [Google Scholar]
- Dallhammer, E.; Schuh, B.; Caldeira, I. Urban Impact Assessment Report. Implementation of the 2030 Agenda. The Influence of SDG 11.3 on Urban Development through Spatial Planning; European Committee of the Region: Luxembourg, 2018. [Google Scholar]
- European Environment Agency. Land Take in Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/land-take-3 (accessed on 6 April 2021).
- Meiner, A.; Pedroli, G.B.M.; European Environment Agency. Landscapes in Transition: An Account of 25 Years of Land Cover Change in Europe; EEA Publications Office: Luxembourg, 2017. [Google Scholar]
- Xie, H.; Zhang, Y.; Duan, K. Evolutionary Overview of Urban Expansion Based on Bibliometric Analysis in Web of Science from 1990 to 2019. Habitat Int. 2020, 95, 102100. [Google Scholar] [CrossRef]
- Wang, L.; Brenden, T.; Seelbach, P.; Cooper, A.; Allan, D.; Clarck, R.; Wiley, M. Landscape Based Identification of Human Disturbance Gradients and Reference Conditions for Michigan Streams. Environ. Monit. Assess. 2008, 144, 483–484. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, F.; Zhao, X.; Wang, X.; Shi, L.; Xu, J.; Yu, S.; Wen, Q.; Zuo, L.; Yi, L.; et al. Urban Expansion in China Based on Remote Sensing Technology: A Review. Chin. Geogr. Sci. 2018, 28, 727–743. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Gou, S.; Zhang, Q.; Zhang, J.; Xu, L. Detecting Global Urban Expansion over the Last Three Decades Using a Fully Convolutional Network. Environ. Res. Lett. 2019, 14, 034008. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating Urban Expansion and Land Use Change in Shijiazhuang, China, by Using GIS and Remote Sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.; Huang, Z. Urban Land Expansion and Spatial Dynamics in Globalizing Shanghai. Sustainability 2014, 6, 8856–8875. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Tan, R.; Kong, X.; Zhou, J. Analysis of the Driving Forces of Urban Expansion Based on a Modified Logistic Regression Model: A Case Study of Wuhan City, Central China. Sustainability 2019, 11, 2207. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Zhang, M.; Cui, J.; He, S. Monitoring and Modeling Urban Expansion—A Spatially Explicit and Multi-Scale Perspective. Cities 2015, 43, 92–103. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, A.C.; Hoda, N.; Jeyaseelan, A.T. Evaluating the Long-Term Urban Expansion of Ranchi Urban Agglomeration, India Using Geospatial Technology. J. Indian Soc. Remote Sens. 2011, 39, 213–224. [Google Scholar] [CrossRef]
- Kantakumar, L.N.; Kumar, S.; Schneider, K. Spatiotemporal Urban Expansion in Pune Metropolis, India Using Remote Sensing. Habitat Int. 2016, 51, 11–22. [Google Scholar] [CrossRef]
- Rustiadi, E.; Pravitasari, A.E.; Setiawan, Y.; Mulya, S.P.; Pribadi, D.O.; Tsutsumida, N. Impact of Continuous Jakarta Megacity Urban Expansion on the Formation of the Jakarta-Bandung Conurbation over the Rice Farm Regions. Cities 2021, 111, 103000. [Google Scholar] [CrossRef]
- Dhanarak, K.; Angadi, D.P. Urban Expansion Quantification from Remote Sensing Data for Sustainable Land-Use Planning in Mangaluru, India. Remote Sens. Appl. Soc. Environ. 2021, 23, 100602. [Google Scholar] [CrossRef]
- Xu, G.; Jiao, L.; Liu, J.; Shi, Z.; Zeng, C.; Liu, Y. Understanding Urban Expansion Combining Macro Patterns and Micro Dynamics in Three Southeast Asian Megacities. Sci. Total Environ. 2019, 660, 375–383. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A Comparative Study of Urban Expansion in Beijing, Tianjin and Shijiazhuang over the Past Three Decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, S. Determinants of Urban Expansion and Their Relative Importance: A Comparative Analysis of 30 Major Metropolitans in China. Habitat Int. 2016, 58, 89–107. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, C.; Kuang, W.; Sun, F. Comparison of Changes in Urban Land Use/Cover and Efficiency of Megaregions in China from 1980 to 2015. Remote Sens. 2019, 11, 1834. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Li, Q.; Zhao, T.; Liu, H.; Gao, W.; Shi, T.; Guan, M.; Wu, G. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Zhang, L.; Stork, N.; Sloan, S.; Rijal, S. Urban Expansion Occurred at the Expense of Agricultural Lands in the Tarai Region of Nepal from 1989 to 2016. Sustainability 2018, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Liu, F.; Zhang, Z.; Zhao, X.; Liu, B.; Xu, J.; Wen, Q.; Yi, L.; Hu, S. Spatial Differences of Coastal Urban Expansion in China from 1970s to 2013. Chin. Geogr. Sci. 2015, 25, 389–403. [Google Scholar] [CrossRef]
- De Boeck, F. Urban Expansion, the Politics of Land, and Occupation as Infrastructure in Kinshasa. Land Use Policy 2020, 93, 103880. [Google Scholar] [CrossRef]
- Hereher, M.E. Analysis of Urban Growth at Cairo, Egypt Using Remote Sensing and GIS. Nat. Sci. 2012, 4, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Mundia, C.N.; Aniya, M. Analysis of Land Use/Cover Changes and Urban Expansion of Nairobi City Using Remote Sensing and GIS. Int. J. Remote Sens. 2005, 26, 2831–2849. [Google Scholar] [CrossRef]
- Braimoh, A.K.; Onishi, T. Spatial Determinants of Urban Land Use Change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y. Spatiotemporal Patterns of Urban Land Use Change in the Rapidly Growing City of Lusaka, Zambia: Implications for Sustainable Urban Development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- Magidi, J.; Ahmed, F. Assessing Urban Sprawl Using Remote Sensing and Landscape Metrics: A Case Study of City of Tshwane, South Africa (1984–2015). Egypt. J. Remote Sens. Space Sci. 2019, 22, 335–346. [Google Scholar] [CrossRef]
- Terfa, B.K.; Chen, N.; Liu, D.; Zhang, X.; Niyogi, D. Urban Expansion in Ethiopia from 1987 to 2017: Characteristics, Spatial Patterns, and Driving Forces. Sustainability 2019, 11, 2973. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Estoque, R.C.; Murayama, Y. Spatiotemporal Analysis of Urban Growth in Three African Capital Cities: A Grid-Cell-Based Analysis Using Remote Sensing Data. J. Afr. Earth Sci. 2016, 123, 381–391. [Google Scholar] [CrossRef]
- Linard, C.; Tatem, A.J.; Gilbert, M. Modelling Spatial Patterns of Urban Growth in Africa. Appl. Geogr. 2013, 44, 23–32. [Google Scholar] [CrossRef]
- Xu, G.; Dong, T.; Cobbinah, P.B.; Jiao, L.; Sumari, N.S.; Chai, B.; Liu, Y. Urban Expansion and Form Changes across African Cities with a Global Outlook: Spatiotemporal Analysis of Urban Land Densities. J. Clean. Prod. 2019, 224, 802–810. [Google Scholar] [CrossRef]
- Forget, Y.; Shimoni, M.; Gilbert, M.; Linard, C. Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa. Remote Sens. 2021, 13, 525. [Google Scholar] [CrossRef]
- Haase, D.; Kabisch, N.; Haase, A. Endless Urban Growth? On the Mismatch of Population, Household and Urban Land Area Growth and Its Effects on the Urban Debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L.; Zambon, I.; Chelli, F.M.; Serra, P. Do Spatial Patterns of Urbanization and Land Consumption Reflect Different Socioeconomic Contexts in Europe? Sci. Total Environ. 2018, 625, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Ianoş, I.; Petrişor, A.-I.; Zamfir, D.; Cercleux, A.L.; Stoica, I.V.; Tălângă, C. In Search of a Relevant Index Measuring Territorial Disparities in a Transition Country. Romania as a Case Study. ERDE—J. Geogr. Soc. Berl. 2013, 144, 69–81. [Google Scholar] [CrossRef]
- Hirt, S. Suburbanizing Sofia: Characteristics of Post-Socialist Peri-Urban Change. Urban. Geogr. 2007, 28, 755–780. [Google Scholar] [CrossRef]
- Taubenböck, H.; Gerten, C.; Rusche, K.; Siedentop, S.; Wurm, M. Patterns of Eastern European Urbanisation in the Mirror of Western Trends—Convergent, Unique or Hybrid? Environ. Plan. B Urban. Anal. City Sci. 2019, 46, 1206–1225. [Google Scholar] [CrossRef] [Green Version]
- Stanilov, K.; Hirt, S. Sprawling Sofia: Postsocialist Suburban Growth in the Bulgarian Capital. In Confronting Suburbanization; Stanilov, K., Sýkora, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 163–191. [Google Scholar] [CrossRef]
- Kovács, Z.; Farkas, Z.J.; Egedy, T.; Kondor, A.C.; Szabó, B.; Lennert, J.; Baka, D.; Kohán, B. Urban Sprawl and Land Conversion in Post-Socialist Cities: The Case of Metropolitan Budapest. Cities 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Matei, E.; Dumitrache, L.; Nae, M.; Vijulie, I.; Onetiu, N. Evaluating Sustainability of Urban Development of the Small Towns in Romania. In Proceedings of the SGEM Conference, Albena, Bulgaria, 20–25 June 2011; Volume 3, pp. 1065–1072. [Google Scholar] [CrossRef]
- Hirt, S.; Stanilov, K. Revisiting Urban Planning in the Transitional Countries. Regional Study Prepared for Planning Sustainable Cities Global Report on Human Settlements 2009. Available online: http://www.unhabitat.org/grhs/2009 (accessed on 22 April 2021).
- Dumitrache, L.; Zamfir, D.; Nae, M.; Simion, G.; Stoica, V. The Urban Nexus: Contradictions and Dilemmas of (Post) Communist (Sub) Urbanization in Romania. Hum. Geogr.—J. Stud. Res. Hum. Geogr. 2016, 10, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Ursu, A.; Burtila, R.; Minea, V.; Marius, A.; Ichim, P. Urban Public Transportation System Changes, in Post Communist Period in Iasi Municipality. In Proceedings of the SGEM 2015 Conference, Albena, Bulgaria, 16–24 June 2015; Volume 2, pp. 615–622. [Google Scholar] [CrossRef]
- Stoica, I.-V.; Tulla, A.F.; Zamfir, D.; Petrișor, A.-I. Exploring the Urban Strength of Small Towns in Romania. Soc. Indic. Res. 2020, 152, 843–875. [Google Scholar] [CrossRef]
- Stanilov, K. Urban Planning and the Challenges of Post-Socialist Transformation. In The Post-Socialist City: Urban Form and Space Transformations in Central and Eastern Europe After Socialism; GeoJournal Library; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Sýkora, L.; Bouzarovski, S. Multiple Transformations: Conceptualising the Post-Communist Urban Transition. Urban. Stud. 2011, 49, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Slaev, A.D.; Nedović-Budić, Z.; Krunić, N.; Petrić, J.; Daskalova, D. Suburbanization and Sprawl in Post-Socialist Belgrade and Sofia. Eur. Plan. Stud. 2018, 26, 1389–1412. [Google Scholar] [CrossRef]
- Stanilov, K.; Sýkora, L. Postsocialist Suburbanization Patterns and Dynamics: A Comparative Perspective. In Confronting Suburbanization; Stanilov, K., Sýkora, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 256–295. [Google Scholar] [CrossRef]
- Stoica, I.-V.; Vîrghileanu, M.; Zamfir, D.; Mihai, B.-A.; Săvulescu, I. Comparative Assessment of the Built-Up Area Expansion Based on Corine Land Cover and Landsat Datasets: A Case Study of a Post-Socialist City. Remote Sens. 2020, 12, 2137. [Google Scholar] [CrossRef]
- Hirt, S. Whatever Happened to the (Post) Socialist City? Cities 2013, 32, S29–S38. [Google Scholar] [CrossRef]
- Kovács, Z.; Tosics, I. Urban Sprawl on the Danube: The Impacts of Suburbanization in Budapest. In Confronting Suburbanization; Stanilov, K., Sýkora, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 33–64. [Google Scholar] [CrossRef]
- Hirt, S. Planning during Post-Socialism. In International Encyclopedia of Social and Behavioral Sciences, 2nd ed.; Elsevier: London, UK, 2015; Volume 18, pp. 187–192. [Google Scholar]
- Stanilov, K.; Sýkora, L. Managing Suburbanization in Postsocialist Europe. In Confronting Suburbanization; Stanilov, K., Sýkora, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 296–320. [Google Scholar] [CrossRef]
- Ferenčuhová, S. Explicit Definitions and Implicit Assumptions about Post-Socialist Cities in Academic Writings: Explicit Definitions and Implicit Assumptions. Geogr. Compass 2016, 10, 514–524. [Google Scholar] [CrossRef]
- Poghosyan, A. Quantifying Urban Growth in 10 Post-Soviet Cities Using Landsat Data and Machine Learning. Int. J. Remote Sens. 2018, 39, 8688–8702. [Google Scholar] [CrossRef]
- Leetmaa, K.; Tammaru, T.; Anniste, K. From Priority-Led to Market-Led Suburbanisation In A Post-Communist Metropolis. Tijdschr. Voor Econ. En Soc. Geogr. 2009, 100, 436–453. [Google Scholar] [CrossRef]
- Krisjane, Z.; Berzins, M. Post-Socialist Urban Trends: New Patterns and Motivations for Migration in the Suburban Areas of Rīga, Latvia. Urban. Stud. 2012, 49, 289–306. [Google Scholar] [CrossRef]
- Spórna, T.; Krzysztofik, R. ‘Inner’ Suburbanisation—Background of the Phenomenon in a Polycentric, Post-Socialist and Post-Industrial Region. Example from the Katowice Conurbation, Poland. Cities 2020, 104, 102789. [Google Scholar] [CrossRef]
- Gentile, M.; Marcińczak, S. Housing Inequalities in Bucharest: Shallow Changes in Hesitant Transition. GeoJournal 2014, 79, 449–465. [Google Scholar] [CrossRef]
- Ianoş, I.; Sîrodoev, I.; Pascariu, G.; Henebry, G. Divergent Patterns of Built-up Urban Space Growth Following Post-Socialist Changes. Urban. Stud. 2016, 53, 3172–3188. [Google Scholar] [CrossRef]
- Urban Europe: Statistics on Cities, Towns and Suburbs, 2016 ed.; Koceva, M.M.; Brandmüller, T.; Lupu, I.; Önnerfors, Å.; Corselli-Nordblad, L.; Coyette, C.; Johansson, A.; Strandell, H.; Wolff, P.; Europäische Kommission (Eds.) Statistical books/Eurostat; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Schneider, A.; Woodcock, C.E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-Five Global Cities Using Remotely Sensed Data, Pattern Metrics and Census Information. Urban. Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Netzband, M.; Jürgens, C. Urban and Suburban Areas as a Research Topic for Remote Sensing. In Remote Sensing of Urban and Suburban Areas; Rashed, T., Jürgens, C., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2010; Volume 10, pp. 1–9. [Google Scholar] [CrossRef]
- Alqurashi, A.; Kumar, L.; Sinha, P. Urban Land Cover Change Modelling Using Time-Series Satellite Images: A Case Study of Urban Growth in Five Cities of Saudi Arabia. Remote Sens. 2016, 8, 838. [Google Scholar] [CrossRef] [Green Version]
- Firozjaei; Sedighi; Kiavarz; Qureshi; Haase; Alavipanah. Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sens. 2019, 11, 1966. [Google Scholar] [CrossRef] [Green Version]
- Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Qureshi, S.; Haase, D.; Alavipanah, S.K. Monitoring of Urban Sprawl and Densification Processes in Western Germany in the Light of SDG Indicator 11.3.1 Based on an Automated Retrospective Classification Approach. Remote Sens. 2021, 13, 1694. [Google Scholar] [CrossRef]
- Dolean, B.-E.; Bilașco, Ș.; Petrea, D.; Moldovan, C.; Vescan, I.; Roșca, S.; Fodorean, I. Evaluation of the Built-Up Area Dynamics in the First Ring of Cluj-Napoca Metropolitan Area, Romania by Semi-Automatic GIS Analysis of Landsat Satellite Images. Appl. Sci. 2020, 10, 7722. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, X.; Cai, H. Analysis of Spatial and Temporal Changes and Expansion Patterns in Mainland Chinese Urban Land between 1995 and 2015. Remote Sens. 2021, 13, 2090. [Google Scholar] [CrossRef]
- Khanal, N.; Uddin, K.; Matin, M.; Tenneson, K. Automatic Detection of Spatiotemporal Urban Expansion Patterns by Fusing OSM and Landsat Data in Kathmandu. Remote Sens. 2019, 11, 2296. [Google Scholar] [CrossRef] [Green Version]
- Maktav, D.; Erbek, F.S.; Jürgens, C. Remote Sensing of Urban Areas. Int. J. Remote Sens. 2005, 26, 655–659. [Google Scholar] [CrossRef]
- Leinenkugel, P.; Deck, R.; Huth, J.; Ottinger, M.; Mack, B. The Potential of Open Geodata for Automated Large-Scale Land Use and Land Cover Classification. Remote Sens. 2019, 11, 2249. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Estoque, R.; Handayani, H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef] [Green Version]
- Ellen, D.; Patrick, H. Assessing Post-Socialist Urban Change with Landsat Data; Case Study Berlin, Germany. In 2007 Urban Remote Sensing Joint Event; IEEE: Paris, France, 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Kanjir, U.; Veljanovski, T.; Ostir, K. Change Detection of Urban Areas—the Ljubljana, Slovenia Case Study. In 2011 Joint Urban Remote Sensing Event; IEEE: Munich, Germany, 2011; pp. 425–428. [Google Scholar] [CrossRef]
- Franke, D. Development of Suburbanization in the Hinterland of Prague Monitored by Remote Sensing. In Proceedings of the SGEM 2015 Conference, Albena, Bulgaria, 16–24 June 2015; Volume 1, pp. 1027–1034. [Google Scholar] [CrossRef]
- Mihai, B.; Nistor, C.; Simion, G. Post-Socialist Urban Growth of Bucharest, Romania—a Change Detection Analysis on Landsat Imagery (1984–2010). Acta Geogr. Slov. 2015, 55, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Institutul Național de Statistică (National Institute of Statistics). Anuarul Statistic al României—Serii de Timp (CD-ROM); Bucharest, Romania, 2020. [Google Scholar]
- Pîrvu, R.; Bădîrcea, R.; Manta, A.; Lupăncescu, M. The Effects of the Cohesion Policy on the Sustainable Development of the Development Regions in Romania. Sustainability 2018, 10, 2577. [Google Scholar] [CrossRef] [Green Version]
- Sýkora, L.; Mulíček, O. Prague: Urban Growth and Regional Sprawl. In Confronting Suburbanization; Stanilov, K., Sýkora, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 133–162. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Rujoiu-Mare, M.-R.; Olariu, B.; Mihai, B.-A.; Nistor, C.; Săvulescu, I. Land Cover Classification in Romanian Carpathians and Subcarpathians Using Multi-Date Sentinel-2 Remote Sensing Imagery. Eur. J. Remote Sens. 2017, 50, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Omatu, S. Neural Network Approach to Land Cover Mapping. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1103–1109. [Google Scholar] [CrossRef]
- Dreiseitl, S.; Ohno-Machado, L. Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Ndehedehe, C.; Ekpa, A.; Simeon, O.; Nse, O. Understanding the Neural Network Technique for Classification of Remote Sensing Data Sets. NY Sci. J. 2013, 6, 26–33. [Google Scholar]
- Debojit, B.J.H.; Arora Manoj, K.; Balasubramanian, R. Study and Implementation of a Non-Linear Support Vector Machine Classifier. Int. J. Earth Sci. Eng. 2011, 4, 985–988. [Google Scholar]
- Ndehedehe, C.E.; Oludiji, S.M.; Asuquo, I. Supervised Learning Methods in the Mapping of Built up Areas from Landsat-Based Satellite Imagery in Part of Uyo Metropolis. NY Sci. J. 2013, 6, 45–52. [Google Scholar]
- Mukherjee, A.; Kumar, A.A.; Ramachandran, P. Development of New Index-Based Methodology for Extraction of Built-Up Area from Landsat7 Imagery: Comparison of Performance With SVM, ANN, and Existing Indices. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1592–1603. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H. Evaluating the Generalization Ability of Convolutional Neural Networks for Built-up Area Extraction in Different Cities of China. Optoelectron. Lett. 2020, 16, 52–58. [Google Scholar] [CrossRef]
- Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Lewis, H.G.; Brown, M. A Generalized Confusion Matrix for Assessing Area Estimates from Remotely Sensed Data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef]
- Machado, R.; Bayot, R.; Godinho, S.; Pirnat, J.; Santos, P.; de Sousa-Neves, N. LDTtool: A Toolbox to Assess Landscape Dynamics. Environ. Model. Softw. 2020, 133, 104847. [Google Scholar] [CrossRef]
- Machado, R.; Godinho, S.; Pirnat, J.; Neves, N.; Santos, P. Assessment of Landscape Composition and Configuration via Spatial Metrics Combination: Conceptual Framework Proposal and Method Improvement. Landsc. Res. 2018, 43, 652–664. [Google Scholar] [CrossRef]
- Strategia de Dezvoltare a Județului Ilfov 2020–2030, Sinteza. Consiliul Județean Ilfov, The World Bank. March 2020.
- Sýkora, L.; Stanilov, K. The Challenge of Postsocialist Suburbanization. In Confronting Suburbanization; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 1–32. [Google Scholar] [CrossRef]
- Gheorghe, K.; Ines, G. Urban Growth in the Bucharest Metropolitan Area: Spatial and Temporal Assessment Using Logistic Regression. J. Urban. Plan. Dev. 2018, 144, 05017013. [Google Scholar] [CrossRef]
- Pătroescu, M.; Vânău, G.; Niţă, M.R.; Iojă, C.; Iojă, A. Land Use Change in the Bucharest Metropolitan Area and Its Impacts on the Quality of the Environment in Residential Developments. Forum Geogr. 2011, 10, 177–186. [Google Scholar] [CrossRef]
- Flanders Investment&Trade. Construction-Real Estate Sector in Romania; Flanders Investment&Trade: Bucharest, Romania, 2018. [Google Scholar]
- Negescu, O. Efectele Crizei Financiare Şi Ale Evoluţiei Pieţei Imobiliare Asupra Sectorului Construcţiilor Din România. In Analiză şi Evaluare Economico-Financiară. Provocări pe Piaţa Imobiliară; Academia de Studii Economice Bucureşti: Bucharest, Romania, 2013; pp. 28–42. [Google Scholar]
- Tosa, C.; Mitrea, A.; Sato, H.; Miwa, T.; Morikawa, T. Economic Growth and Urban Metamorphosis: A Quarter Century of Transformations within the Metropolitan Area of Bucharest. J. Transp. Land Use 2018, 11, 273–295. [Google Scholar] [CrossRef] [Green Version]
- Pascariu, G. Overview of Romanian Planning Evolution. In Proceedings of AESOP 26th Annual Congress; METU: Ankara, Turkey, 2012. [Google Scholar]
- Ianoş, I.; Sorensen, A.; Merciu, C. Incoherence of Urban Planning Policy in Bucharest: Its Potential for Land Use Conflict. Land Use Policy 2017, 60, 101–112. [Google Scholar] [CrossRef]
- Grigorescu, I.; Kucsicsa, G.; Popovici, E.-A.; Mitrică, B.; Mocanu, I.; Dumitraşcu, M. Modelling Land Use/Cover Change to Assess Future Urban Sprawl in Romania. Geocarto Int. 2021, 36, 721–739. [Google Scholar] [CrossRef]
- Stoica, I.V.; Tălângă, C.; Braghină, C.; Zamfir, D. Ways of Managing the Urban-Rural Interface. Case Study: Bucharest. Analele Univ. Din. Oradea—Ser. Geogr. 2011, 21, 313–322. [Google Scholar]
- Ianos, I.; Zamfir, D.; Stoica, V.; Cercleux, L.; Schvab, A.; Pascariu, G. Municipal Solid Waste Management For Sustainable Development Of Bucharest Metropolitan Area. Environ. Eng. Manag. J. 2012, 11, 359–369. [Google Scholar] [CrossRef]
- PeiSer, R. Decomposing Urban Sprawl. Town Plan. Rev. 2001, 72, 275–298. [Google Scholar] [CrossRef]
- Rusu, A.; Ursu, A.; Stoleriu, C.C.; Groza, O.; Niacșu, L.; Sfîcă, L.; Minea, I.; Stoleriu, O.M. Structural Changes in the Romanian Economy Reflected through Corine Land Cover Datasets. Remote Sens. 2020, 12, 1323. [Google Scholar] [CrossRef] [Green Version]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and Modelling of Urban Sprawl Using Remote Sensing and GIS Techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land Use and Land Cover Change in Greater Dhaka, Bangladesh: Using Remote Sensing to Promote Sustainable Urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Intensity and Spatial Pattern of Urban Land Changes in the Megacities of Southeast Asia. Land Use Policy 2015, 48, 213–222. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, Y.; Liu, Y.; Qiu, L. Urban Sprawl and Related Problems: Bibliometric Analysis and Refined Analysis from 1991 to 2011. Chin. Geogr. Sci. 2014, 24, 245–257. [Google Scholar] [CrossRef]
- Luo, J.; Xing, X.; Wu, Y.; Zhang, W.; Chen, R.S. Spatio-Temporal Analysis on Built-up Land Expansion and Population Growth in the Yangtze River Delta Region, China: From a Coordination Perspective. Appl. Geogr. 2018, 96, 98–108. [Google Scholar] [CrossRef]
- Krishna, A.P.; Mitra, S.K. Geoinformatics Based Environmental Quality Assessment of Physical Parameters of Urbanization: Case Study of Ranchi City, India; Map Asia: Kuala Lumpur, Malaysia, 2007. [Google Scholar]
2000 | 2008 | 2018 | |
---|---|---|---|
Landsat 7 | Landsat 5 | Landsat 8 | |
Overall accuracy (%) | 95.6667 | 96.0000 | 95.6667 |
Kappa coefficient | 0.9356 | 0.9344 | 0.9409 |
2000 | 2008 | 2018 | ||
Built up area (ha) | 9822.3 | 12,891.4 | 21,948.3 | |
2000–2008 | 2008–2018 | |||
Built up area expansion (ha) | 3069.1 | 9057.0 | ||
Annual growth (ha/years) | 383.6 | 905.7 |
2000–2008 | 2008–2018 | |
---|---|---|
under 10 ha | 65 | 17.5 |
10–20 ha | 22.5 | 27.5 |
20–30 ha | 10 | 27.5 |
over 30 ha | 2.5 | 27.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoica, I.-V.; Zamfir, D.; Vîrghileanu, M. Evaluating the Territorial Impact of Built-Up Area Expansion in the Surroundings of Bucharest (Romania) through a Multilevel Approach Based on Landsat Satellite Imagery. Remote Sens. 2021, 13, 3969. https://doi.org/10.3390/rs13193969
Stoica I-V, Zamfir D, Vîrghileanu M. Evaluating the Territorial Impact of Built-Up Area Expansion in the Surroundings of Bucharest (Romania) through a Multilevel Approach Based on Landsat Satellite Imagery. Remote Sensing. 2021; 13(19):3969. https://doi.org/10.3390/rs13193969
Chicago/Turabian StyleStoica, Ilinca-Valentina, Daniela Zamfir, and Marina Vîrghileanu. 2021. "Evaluating the Territorial Impact of Built-Up Area Expansion in the Surroundings of Bucharest (Romania) through a Multilevel Approach Based on Landsat Satellite Imagery" Remote Sensing 13, no. 19: 3969. https://doi.org/10.3390/rs13193969