Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite—The Role of Complex Spatial Structures
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Source
3.2. Image Classification
3.3. Accuracy Assessment
3.4. Data Processing
4. Results
4.1. Satellite-Derived Surface Temperature and Urban Compositions
4.2. Relationship between Urban Compositions and Surface Temperature
4.3. Impact of Land Use and Building Structure on Surface Temperature
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Fragkais, M.; Guneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2013, 6, e237777. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, A.; McCombe, G.; Harrold, A.; McMeel, C.; Mills, G.; Moore-Cherry, N.; Cullen, W. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 2021, 30, 179–193. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Tan, H.; Ray, P.; Tewari, M.; Brownlee, J.; Ravindran, A. Response of Near-Surface Meteorological Conditions to Advection under Impact of the Green Roof. Atmosphere 2019, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Complete urban surface temperatures. J. Appl. Meteorol. 1997, 36, 1117–1132. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Yoshikado, H. Vertical structure of the sea breeze penetrating through a large urban complex. J. Appl. Meteor. 1990, 29, 878–891. [Google Scholar] [CrossRef] [Green Version]
- Yoshikado, H. Numerical study of the daytime urban effect and its interaction with the sea breeze. J. Appl. Meteor. 1992, 31, 1146–1164. [Google Scholar]
- Wang, M.; Xu, H. The impact of building height on urban thermal environment in summer: A case study of Chinese megacities. PLoS ONE 2021, 16, e0247786. [Google Scholar] [CrossRef]
- Nichol, J.; Wong, M.S. Modeling urban environmental quality in a tropical city. Landsc. Urban Plan. 2005, 73, 49–58. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban. For. Urban. Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Edmondson, J.; Stott, I.; Davies, Z.; Gaston, K.J.; Leake, J.R. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Sci. Rep. 2016, 6, 33708. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Chen, Y.; Wang, D.; Chen, Z.; Gong, A.; Li, J. Study of the Seasonal Effect of Building Shadows on Urban Land Surface Temperatures Based on Remote Sensing Data. Remote Sens. 2019, 11, 497. [Google Scholar] [CrossRef] [Green Version]
- Loughner, C.P.; Allen, D.J.; Zhang, D.L.; Pickering, K.E.; Dickerson, R.R.; Landry, L. Role of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteor. 2012, 51, 1775–1793. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A.; Hwang, R.L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Carlson, T.N. Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sens. Rev. 1986, 1, 197–247. [Google Scholar] [CrossRef]
- Price, J.C. Assessment of the urban heat island effect through the use of satellite data. Mon. Wea. Rev. 1979, 107, 1554–1557. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Grimmond, C.S.B. Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J. Appl. Meteorol. 2000, 39, 1679–1699. [Google Scholar] [CrossRef]
- Gedzelman, S.D.; Austin, S.; Cermak, R.; Stefano, N.; Partridge, S.; Quesenberry, S.; Robinson, D.A. Mesoscale aspects of the Urban Heat Island around New York City. Theor. Appl. Climatol. 2003, 75, 29–42. [Google Scholar] [CrossRef]
- ASTER_08, 2020. NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. In ASTER Level 2 Surface Temperature Product; Distributed by NASA EOSDIS Land Processes DAAC; DAAC: Sioux Falls, SD, USA, 2001. [CrossRef]
- Yamaguchi, Y.; Kahle, A.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, A.R.; Matsunaga, T.; Rokugawa, S.; Hook, S.J. Temperature and Emissivity Separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Hook, S.; Hulley, G. ECOSTRESS Land Surface Temperature and Emissivity Daily L2 Global 70 m V001; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2018. [Google Scholar] [CrossRef]
- New York City Department of City Planning (NYC DCP). PLUTO: Extensive Land Use and Geographic Data at the Tax Lot Level. 2020. Available online: https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page (accessed on 9 March 2021).
- New York City Department of Environmental Protection (NYC DEP). 2005 Street Tree Census, NYC Open Data. Available online: https://data.cityofnewyork.us/Environment/2005-Street-Tree-Census/29bw-z7pj (accessed on 9 March 2021).
- Loveland, T.; Belward, A. The IGBP-DIS global 1 km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Gluch, R.; Quattrochi, D.A.; Luvall, J.C. A multi-scale approach to urban thermal analysis. Remote Sens. Environ. 2006, 104, 123–132. [Google Scholar] [CrossRef]
- Carpenter, G.A.; Grossberg, S.; Markuzon, N.; Reynolds, J.H.; Rosen, D.B. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Netw. 1992, 3, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, G.; Gopal, A.S.; Macomber, S.; Martens, S.; Woodcock, C.E. A neural network method for mixture estimation for vegetation mapping. Remote Sens. Environ. 1999, 70, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, G.A.; Gopal, S.; Macomber, S.; Martens, S.; Woodcock, C.E. A neural network method for efficient vegetation mapping. Remote Sens. Environ. 1999, 70, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Pax-Lenney, M.; Woodcock, C.E.; Macomber, S.A.; Gopal, S.; Song, C. Forest mapping with a generalized classifier and Landsat TM data. Remote Sens. Environ. 2001, 77, 241–250. [Google Scholar] [CrossRef]
- Friedl, M.A.; Woodcock, C.E.; Gopal, S.; Muchoney, D.; Strahler, A.H.; Barker-Schaaf, C. A Note on procedures used for accuracy assessment in land cover maps derived from AVHRR data. Int. J. Remote Sens. 2000, 21, 1073–1077. [Google Scholar] [CrossRef]
- Rasterstat. Zonal Statistics: A Method of Summarizing and Aggregating the Raster Values Intersecting a Vector Geometry. 2021. Available online: https://pythonhosted.org/rasterstats/index.html (accessed on 28 March 2021).
- Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, W.; Yan, J.; Qian, Y.; Wang, J.; Li, W. The higher, the cooler? Effects of building height on land surface temperatures in residential areas of Beijing. Phys. Chem. Earth 2019, 110, 149–156. [Google Scholar] [CrossRef]
- Ni, W.; Li, X.; Woodcock, C.E.; Caetano, M.R.; Strahler, A.H. An Analytical Hybrid GORT Bidirectional Reflectance Model for Discontinuous Plant Canopies. IEEE Trans. Geosci. Remote Sens. 1999, 37, 987–999. [Google Scholar]
- Vo, A.V.; Laefer, D.F. A bid data approach for comprehensive urban shadow analysis from airborne laser scanning point clouds. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 14th 3D GeoInfo Conference, Singapore, 24–27 September 2019; Volume IV-4/W8. [Google Scholar]
- Deng, Y.; Chen, R.; Xie, Y.; Xu, J.; Yang, J.; Liao, W. Exploring the Impacts and Temporal Variations of Different Building Roof Types on Surface Urban Heat Island. Remote Sens. 2021, 13, 2840. [Google Scholar] [CrossRef]
- Treglia, M.L.; McPhearson, T.; Sanderson, E.W.; Yetman, G.; Maxwell, E.N. Green Roofs Footprints for New York City, Assembled from Available Data and Remote Sensing (Version 1.0.0). Zenodo. 2018. Available online: https://github.com/tnc-ny-science/NYC_GreenRoofMapping/blob/master/greenroof_gisdata/CurrentDatasets/GreenRoofData2016_20180917.csv (accessed on 9 August 2021).
- New York City Cool Roofs (NYC CoolRoofs). Research Data Services (RDS), Columbia University Libraries and New York City Department of Buildings. Available online: https://maps.princeton.edu/catalog/sde-columbia-cul_nyc_dob_coolroofs_2012 (accessed on 9 August 2021).
Satellite | Product Identifier | Date of Pass | Time of Pass | Sun Elevation |
---|---|---|---|---|
ASTER–VNIR | AST_L1T_00309082002155230_20150424220415_64929 | 8 September 2002 | 15:52:30.57 | 52.26° |
ASTER–LST | AST_L1A#003_09082002155230_09302002162843.hdf | 8 September 2002 | 15:52:30.57 | 52.26° |
QuickBird–QB02 | CatId: 1010010000EA2000 | 2 August 2002 | 15:48:56.18 | 62.21° |
Class | Description |
---|---|
Shadow | A standalone category. The shadow category includes shadows cast by buildings and trees. |
Bright cover | This class refers to sealed surfaces with a high albedo, such as highly reflective rooftops and industrial plants. This corresponds to bright surfaces seen in the original satellite images. |
Impervious-medium | The impervious-medium surfaces are mainly concrete building materials. |
Impervious-dark | The impervious-dark surfaces are mainly asphalt, tar, parking lots, and roadways. |
Trees | This category includes any vegetation likely to cast a shadow. Such as deciduous and evergreen trees and shrubs with greater canopy cover. |
Grassland | This class includes grasses in parks, sides of streets, residential lawns, and golf courses. |
Bareground | This class typically refers to playing fields and empty lots. |
Water | All water bodies (river, lake, pond, etc.) are included in this class. |
Class | Shadow | Bright Cover | Impervious-Medium | Impervious-Dark | Trees | Grassland | Bareground | Total |
---|---|---|---|---|---|---|---|---|
Shadow | 5794 | 0 | 0 | 282 | 0 | 0 | 0 | 6076 |
Bright cover | 0 | 4045 | 14 | 0 | 0 | 0 | 0 | 4059 |
Impervious-medium | 0 | 49 | 2634 | 131 | 0 | 232 | 0 | 3046 |
Impervious-dark | 60 | 0 | 1 | 4468 | 0 | 0 | 0 | 4529 |
Trees | 0 | 0 | 0 | 0 | 725 | 0 | 0 | 725 |
Grassland | 0 | 0 | 0 | 0 | 13 | 473 | 0 | 486 |
Bareground | 0 | 2 | 0 | 0 | 0 | 0 | 398 | 400 |
Total | 5854 | 4096 | 2649 | 4881 | 738 | 705 | 398 | 19,321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, B.; Ni-Meister, W.; Özdoğan, M. Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite—The Role of Complex Spatial Structures. Remote Sens. 2021, 13, 3797. https://doi.org/10.3390/rs13193797
Nath B, Ni-Meister W, Özdoğan M. Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite—The Role of Complex Spatial Structures. Remote Sensing. 2021; 13(19):3797. https://doi.org/10.3390/rs13193797
Chicago/Turabian StyleNath, Bibhash, Wenge Ni-Meister, and Mutlu Özdoğan. 2021. "Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite—The Role of Complex Spatial Structures" Remote Sensing 13, no. 19: 3797. https://doi.org/10.3390/rs13193797
APA StyleNath, B., Ni-Meister, W., & Özdoğan, M. (2021). Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite—The Role of Complex Spatial Structures. Remote Sensing, 13(19), 3797. https://doi.org/10.3390/rs13193797