Using Improved Edge Detection Method to Detect Mining-Induced Ground Fissures Identified by Unmanned Aerial Vehicle Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mining-Induced Ground Fissure Monitoring
2.2. Infrared and Visible Image Fusion Method
2.3. Edge Detection Methods
2.3.1. Classical Edge Detection Methods
2.3.2. Improved Edge Detection Method
- Step 1: The LoG filter is used to perform preliminary fissure detection in the image. LoG arithmetic is the convolution of Laplacian arithmetic and Gaussian arithmetic. To reduce noise, all acquired images are smoothed with a two-dimensional Gaussian filter. it may be desirable to first smooth the image by a convolution with a Gaussian kernel of width σ,
- 2.
- Step 2: Canny operator is selected to detect fissures in the initial detection image. Due to the use of multi-level algorithm, each step can refine the results, so it has a good performance. Canny operator uses Gaussian function to calculate gradient, which works at multi threshold level based on primary edge and secondary edge, and has a good signal-to-noise ratio.
- 3.
- Step 3: Finally, the closed operation of mathematical morphology is used to postprocess the fissure detection image of step 2. Mathematical morphology has two basic operations, namely dilation and erosion, are defined as follows [34]:
- Dilation:
- Erosion:
2.4. Quantitative Approaches to Edge Detection Evaluation
2.4.1. Peak Signal-to-Noise Rate
2.4.2. Effective Edge Rate
2.4.3. Pratt’s Figure of Merit
2.4.4. F-Measure
2.5. Calculation of the Length of Fissure in Images
3. Results
3.1. Mining-Induced Ground Fissure Identification Result
3.2. Mining-Induced Ground Fissure Detection
3.2.1. Fissure Detection Results for the Visible Image
3.2.2. Fissure Detection Results for the Infrared Image
3.2.3. Fissure Detection Results for the Fused Image
3.3. Fissure Detection and Length Calculation of Infrared Images
3.3.1. Fissure Detection for Infrared Images at Different Times
3.3.2. Fissure Length in Infrared Images and Detection Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, F.F.; Zhang, Q.; Lu, Z.; Zhao, C.Y.; Yang, C.S.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2014, 155, 366–376. [Google Scholar] [CrossRef]
- Peng, J.B.; Qiao, J.W.; Sun, X.H.; Lu, Q.Z.; Zheng, J.G.; Meng, Z.J.; Xu, J.S.; Wang, F.Y.; Zhao, J.Y. Distribution and generative mechanisms of ground fissures in China. J. Asian Earth Sci. 2020, 191, 104218. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.P.; Kerle, N.; Niethammer, U.; Rothmund, S. Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 2013, 186, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswiga, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Travelletti, J.; Malet, J.P.; Delacourt, C. Image-based correlation of Laser Scanning point cloud time series for landslide monitoring. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 1–18. [Google Scholar] [CrossRef]
- Ge, Y.F.; Tang, H.M.; Gong, X.L.; Zhao, B.B. Deformation monitoring of earth fissure hazards using Terrestrial Laser Scanning. Sensors 2019, 19, 1463. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, A.M.; Campilho, A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 2006, 25, 1200–1213. [Google Scholar] [CrossRef]
- Ikhlas, A.Q.; Osama, A.; Michael, K. Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civil Eng. 2003, 17, 255–263. [Google Scholar]
- Ghodrati, S.; Mohseni, M.; Kandi, S.G. Application of image edge detection methods for precise estimation of the standard surface roughness parameters: Polypropylene/ethylene-propylene-diene-monomer blend as a case study. Measurement 2019, 138, 80–90. [Google Scholar] [CrossRef]
- Fatan, M.; Daliri, M.R.; Shahri, A.M. Underwater cable detection in the images using edge classification based on texture information. Measurement 2016, 91, 309–317. [Google Scholar] [CrossRef]
- Li, Q.Q.; Zou, Q.; Zhang, D.Q.; Mao, Q.Z. FoSA: F* Seed-growing Approach for crack-line detection from pavement images. Image Vis. Comput. 2011, 29, 861–872. [Google Scholar] [CrossRef]
- Yu, Y.; Rashidi, M.; Samali, B.; Yousefi, A.M.; Wang, W.Q. Multi-Image-Feature-Based Hierarchical Concrete Crack Identification Framework Using Optimized SVM Multi-Classifiers and D–S Fusion Algorithm for Bridge Structures. Remote Sens. 2021, 13, 240. [Google Scholar] [CrossRef]
- Roberts, L. Machine Perception of Three-Dimensional Solids. Ph.D. Thesis, Massachusetts Institute of Technology, Boston, MA, USA, 1963. [Google Scholar]
- Sobel, I. Camera Models and Machine Perception. Ph.D. Thesis, Stanford University, San Francisco, CA, USA, 1970. [Google Scholar]
- Prewitt, J.M.S. Object enhancement and extraction. In Picture Processing and Psychopictorics; Elsevier: Amsterdam, The Netherlands, 1970; Volume 10, pp. 15–19. [Google Scholar]
- Kirsch, R.A. Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 1971, 4, 315–328. [Google Scholar] [CrossRef]
- Jain, R.C.; Kasturi, R.; Schunck, B.G. Machine Vision; China Machine Press: Beijing, China, 2003. [Google Scholar]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. Lond. 1980, 207, 187–217. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Lee, J.S.J.; Haralick, R.M.; Shapiro, L.G. Morphologic edge detection. IFAC Proc. Vol. 1986, 19, 7–14. [Google Scholar] [CrossRef]
- Maragos, P. Tutorial on advances in morphological image processing and analysis. Opt. Eng. 1987, 26, 623–632. [Google Scholar] [CrossRef]
- Haralick, R.M.; Sternberg, S.R.; Zhuang, X.H. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 532–550. [Google Scholar] [CrossRef]
- Kaspersen, J.H.; Langø, T.; Lindseth, F. Wavelet-based edge detection in ultrasound images. Ultrasound Med. Biol. 2001, 27, 89–99. [Google Scholar] [CrossRef]
- Ducottet, C.; Fournel, T.; Barat, C. Scale-adaptive detection and local characterization of edges based on wavelet transform. Signal Process. 2004, 84, 2115–2137. [Google Scholar] [CrossRef]
- Papari, G.; Petkov, N. Edge and line oriented contour detection: State of the art. Image Vis. Comput. 2011, 29, 79–103. [Google Scholar] [CrossRef]
- Quackenbush, L.J. A review of techniques for extracting linear features from imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Zou, Q.; Cao, Y.; Li, Q.Q.; Mao, Q.Z.; Wang, S. Crack Tree: Automatic crack detection from pavement images. Pattern Recognit. Lett. 2012, 33, 227–238. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.L. Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 2013, 14, 155–168. [Google Scholar] [CrossRef]
- Zhang, B.H.; Lu, X.Q.; Pei, H.Q.; Zhao, Y. A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled Shearlet transform. Infrared Phys. Technol. 2015, 73, 286–297. [Google Scholar] [CrossRef]
- Cui, G.M.; Feng, H.J.; Xu, Z.H.; Li, Q.; Chen, Y.T. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt. Commun. 2015, 341, 199–209. [Google Scholar] [CrossRef]
- Ma, J.Y.; Ma, Y.; Li, C. Infrared and visible image fusion methods and applications: A survey. Inf. Fusion 2019, 45, 153–178. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.P.; Wang, Z.F. A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 2015, 24, 147–164. [Google Scholar] [CrossRef]
- Berzins, V. Accuracy of laplacian edge detectors. Comput. Vis. Graph. Image Process. 1984, 27, 195–210. [Google Scholar] [CrossRef]
- Martínez, S.S.; Vázquez, C.O.; García, J.G.; Ortega, J.G. Quality inspection of machined metal parts using an image fusion technique. Measurement 2017, 111, 374–383. [Google Scholar] [CrossRef]
- Ansari, M.D.; Mishra, A.R.; Ansari, F.T. New Divergence and Entropy Measures for Intuitionistic Fuzzy Sets on Edge Detection. Int. J. Fuzzy Syst. 2018, 20, 474–487. [Google Scholar] [CrossRef]
- Fram, J.R.; Deutsch, E.S. On the Quantitative Evaluation of Edge Detection Schemes and their Comparison with Human Performance. IEEE Trans. Comput. 1975, 24, 616–628. [Google Scholar] [CrossRef]
- Abdou, I.E.; Pratt, W.K. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 1979, 67, 753–763. [Google Scholar] [CrossRef]
- Kokkinos, I. Boundary Detection Using F-Measure-, Filter- and Feature- (F3) Boost. In Proceedings of the Computer Vision—ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010. [Google Scholar]
- Liu, S.; Cheng, X.C.; Fu, W.N.; Zhou, Y.P.; Li, Q.Z. Numeric characteristics of generalized M-set with its asymptote. Appl. Math. Comput. 2014, 243, 767–774. [Google Scholar] [CrossRef]
- Raman, M.; Aggarwal, H. Study and comparison of various image edge detection techniques. Int. J. Image Process. 2009, 3, 1–11. [Google Scholar]
- Juneja, M.; Sandhu, P.S. Performance evaluation of edge detection techniques for images in spatial domain. Int. J. Comput. Theory Eng. 2009, 1, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.Y.; Wang, Y.Y. A fusion method for visible and infrared images based on contrast pyramid with teaching learning based optimization. Infrared Phys. Technol. 2014, 64, 134–142. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal Properties of Soils as Affected by Density and Water Content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Prentice Hall International: Hoboken, NJ, USA, 2008; pp. 484–486. [Google Scholar]
- Zou, Q.; Zhang, Z.; Li, Q.Q.; Qi, X.B.; Wang, Q.; Wang, S. DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection. IEEE Trans. Image Process. 2019, 28, 1498–1512. [Google Scholar] [CrossRef]
Evaluation Indexes | PSNR | PFoM | F-Measure | Precision | Recall | ||
---|---|---|---|---|---|---|---|
Methods | |||||||
Roberts | 18.8059 | 0.0119 | 0.0558 | 0.6309 | 0.4649 | 0.9814 | |
Sobel | 18.8059 | 0.0299 | 0.0809 | 0.6316 | 0.4650 | 0.9840 | |
Prewitt | 18.8059 | 0.0336 | 0.0803 | 0.6316 | 0.4650 | 0.9839 | |
Canny | 18.8076 | 0.0828 | 0.0827 | 0.6297 | 0.4648 | 0.9756 | |
Laplacian | 10.1105 | 0.0767 | 0.0087 | 0.0000 | 0.4000 | 0.0000 | |
Proposed | 18.8102 | 0.0819 | 0.1297 | 0.6255 | 0.4734 | 0.9217 |
Evaluation Indexes | PSNR | PFoM | F-Measure | Precision | Recall | ||
---|---|---|---|---|---|---|---|
Methods | |||||||
Roberts | 18.8096 | 0.2763 | 0.3540 | 0.6321 | 0.4643 | 0.9896 | |
Sobel | 18.8104 | 0.1714 | 0.2434 | 0.6294 | 0.4639 | 0.9787 | |
Prewitt | 18.8104 | 0.1712 | 0.2448 | 0.6295 | 0.4639 | 0.9790 | |
Canny | 18.8086 | 0.5513 | 0.4448 | 0.6342 | 0.4650 | 0.9974 | |
Laplacian | 16.5738 | 0.1974 | 0.0660 | 0.0001 | 0.4340 | 0.0000 | |
Proposed | 18.8209 | 0.6259 | 0.5708 | 0.6331 | 0.4659 | 0.9876 |
Evaluation Indexes | PSNR | PFoM | F-Measure | Precision | Recall | ||
---|---|---|---|---|---|---|---|
Methods | |||||||
Roberts | 18.8095 | 0.2030 | 0.2678 | 0.0401 | 0.3726 | 0.0212 | |
Sobel | 18.8106 | 0.1510 | 0.2065 | 0.3039 | 0.4298 | 0.2351 | |
Prewitt | 18.8107 | 0.1553 | 0.2086 | 0.3064 | 0.3401 | 0.2787 | |
Canny | 18.8091 | 0.2848 | 0.2892 | 0.6321 | 0.4647 | 0.9877 | |
Laplacian | 18.0569 | 0.1630 | 0.0910 | 0.3569 | 0.2894 | 0.4655 | |
Proposed | 18.8230 | 0.3444 | 0.3337 | 0.6321 | 0.4693 | 0.9679 |
Time | Fissure I1 Length (m) | Difference (m) | Error (%) | |
---|---|---|---|---|
Visible Image | Fissure Detection Results | |||
1:00 am | 3.01 | 3.02 | 0.01 | 0.33 |
3:00 am | 3.07 | 0.06 | 1.99 | |
5:00 am | 3.16 | 0.15 | 4.98 | |
7:00 am | 0.40 | −2.61 | −86.71 | |
9:00 am | 2.75 | −0.26 | −8.64 | |
11:00 am | 2.72 | −0.29 | −9.63 | |
1:00 pm | 1.23 | −1.78 | −59.14 | |
3:00 pm | 0.40 | −2.61 | −86.71 | |
5:00 pm | - | - | - | |
7:00 pm | 2.72 | −0.29 | −9.63 | |
9:00 pm | 3.01 | 0.00 | 0.00 | |
11:00 pm | 2.87 | −0.14 | −4.65 |
Time | Fissure I1 Length (m) | Difference (m) | Error (%) | |
---|---|---|---|---|
Infrared Images | Fissure Detection Results | |||
1:00 am | 3.00 | 3.02 | 0.02 | 0.75 |
3:00 am | 3.19 | 3.07 | −0.12 | −3.65 |
5:00 am | 3.04 | 3.16 | 0.12 | 4.03 |
7:00 am | 0.71 | 0.40 | −0.31 | −43.44 |
9:00 am | 2.86 | 2.75 | −0.11 | −3.72 |
11:00 am | 2.88 | 2.72 | −0.16 | −5.59 |
1:00 pm | 2.73 | 1.23 | −1.50 | −54.95 |
3:00 pm | 2.76 | 0.40 | −2.36 | −85.58 |
5:00 pm | - | - | - | - |
7:00 pm | 2.94 | 2.72 | −0.22 | −7.35 |
9:00 pm | 2.99 | 3.01 | 0.02 | 0.73 |
11:00 pm | 3.04 | 2.87 | −0.17 | −5.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Zhao, Y.; Jiang, Y.; Zhang, C.; Sun, B.; He, X. Using Improved Edge Detection Method to Detect Mining-Induced Ground Fissures Identified by Unmanned Aerial Vehicle Remote Sensing. Remote Sens. 2021, 13, 3652. https://doi.org/10.3390/rs13183652
Xu D, Zhao Y, Jiang Y, Zhang C, Sun B, He X. Using Improved Edge Detection Method to Detect Mining-Induced Ground Fissures Identified by Unmanned Aerial Vehicle Remote Sensing. Remote Sensing. 2021; 13(18):3652. https://doi.org/10.3390/rs13183652
Chicago/Turabian StyleXu, Duo, Yixin Zhao, Yaodong Jiang, Cun Zhang, Bo Sun, and Xiang He. 2021. "Using Improved Edge Detection Method to Detect Mining-Induced Ground Fissures Identified by Unmanned Aerial Vehicle Remote Sensing" Remote Sensing 13, no. 18: 3652. https://doi.org/10.3390/rs13183652
APA StyleXu, D., Zhao, Y., Jiang, Y., Zhang, C., Sun, B., & He, X. (2021). Using Improved Edge Detection Method to Detect Mining-Induced Ground Fissures Identified by Unmanned Aerial Vehicle Remote Sensing. Remote Sensing, 13(18), 3652. https://doi.org/10.3390/rs13183652