A Closed-Form Solution to Linear Feature-Based Registration of LiDAR Point Clouds
Abstract
:1. Introduction
2. Related Work
2.1. Quaternion’s Application in Point Cloud Registration
2.2. Linear Feature-Based Registration Methods
3. Plücker Coordinate-Based Registration Model
3.1. Plücker Coordinate-Based Representation of Spatial Lines
3.2. Dual Quaternion-Based Transformation of the Plücker Coordinates
3.3. L2 Norm Minimization-Based Solution for Registration Parameters
3.3.1. Solution for the Unit Quaternion
3.3.2. Solution for the Quaternion and the Scale Factor
3.3.3. Algorithm Implementation
- (1)
- Constructing matrix based on matrix . Then, calculating the minimum eigenvalue and its corresponding eigenvector of .
- (2)
- Calculating the quaternion using Equation (33).
- (3)
- Calculating the scale coefficient μ using Equation (32).
- (4)
- Calculating the quaternion using Equation (36).
3.4. Minimum Number of Features Needed
4. Results
4.1. Point Clouds Captured by Riegl LMS-Z420i
4.2. Point Clouds Captured by Riegl VZ-1000
5. Discussion
6. Conclusions
- (1)
- With normalized Plücker coordinates, a line in three-dimensional space has a unique mathematical expression, which makes it possible to obtain the differences between each pair of conjugate linear features, facilitating the design of our closed-form solution.
- (2)
- Unlike with iterative methods, the linearization of the objective function is omitted in the proposed closed-form solution, which makes it possible to get rid of the high dependence on the selection of those initial estimates, thus assuring the stability of the algorithm, especially in large-angle similarity transformation problems.
- (3)
- Based on the relationship between Plücker coordinates and dual quaternions, the integration of the scaling factor and dual quaternions makes it possible to realize the linear feature-based similarity transformation in three-dimensional space, which extends the application field of dual quaternions in multi-source data fusion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arun, K.S.; Huang, T.S.; Bostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 698–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besl, P.J.; Mckay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Horn, B.K. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. Ser. A 1987, 4, 629–642. [Google Scholar] [CrossRef]
- Horn, B.K. Closed form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. Ser. A 1988, 5, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.W.; Shao, L.; Volz, R.A. Estimating 3-D Location Parameters Using Dual Number Quaternions. CVGIP: Image Underst. 1991, 54, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Wu, K.; Yang, H.; Zhang, H. A dual quaternion-based, closed-form pairwise registration algorithm for point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 94, 63–69. [Google Scholar] [CrossRef]
- Habib, A.; Ghanma, M.; Morgan, M.; Al-Ruzouq, R. Photogrammetric and LiDAR Data Registration Using Linear Features. Photogramm. Eng. Remote Sens. 2005, 71, 699–707. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Liu, Y.; Niu, X. Linear-Feature-Constrained Registration of LiDAR Point Cloud via Quaternion. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 1057–1062. [Google Scholar]
- Al-Durgham, K.; Habib, A. Association-matrix-based sample consensus approach for automated registration of terrestrial laser scans using linear features. Photogramm. Eng. Remote Sens. 2014, 80, 1029–1039. [Google Scholar] [CrossRef]
- Sheng, Q.H.; Chen, S.W.; Liu, J.F.; Wang, H. LiDAR Point Cloud Registration based on Plücker Line. Acta Geod. Cartogr. Sin. 2016, 45, 58–64. [Google Scholar]
- He, F.; Habib, A. A Closed-Form Solution for Coarse Registration of Point Clouds Using Linear Features. J. Surv. Eng. 2016, 142, 04016006. [Google Scholar] [CrossRef]
- Khoshelham, K. Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds. ISPRS J. Photogramm. Remote Sens. 2016, 114, 78–91. [Google Scholar] [CrossRef]
- Pavan, N.; Santos, D.; Khoshelham, K. Global Registration of Terrestrial Laser Scanner Point Clouds Using Plane-to-Plane Correspondences. Remote Sens. 2020, 12, 1127. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.B.; Zheng, N.S.; Bian, Z.F. A Quaternion-based, Planar Feature-constrained Algorithm for the Registration of LiDAR Point Clouds. Acta Opt. Sin. 2020, 40, 2310001. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, N.; Bian, Z. A Closed-Form Solution to Planar Feature-Based Registration of LiDAR Point Clouds. ISPRS Int. J. Geo-Inf. 2021, 10, 435. [Google Scholar] [CrossRef]
- Zheng, D.H.; Yue, D.J.; Yue, J.P. Geometric feature constraint based algorithm for building scanning point cloud registration. Acta Geod. Cartogr. Sin. 2008, 37, 464–468. [Google Scholar]
- Wang, Y.; Wang, Y.; Han, X.; She, W. A Unit Quaternion based, Point-Linear Feature Constrained Registration Approach for Terrestrial LiDAR Point Clouds. J. China Univ. Min. Technol. 2018, 47, 671–677. [Google Scholar]
- Chai, S.W.; Yang, X.Q. Line primitive point cloud registration method based on dual quaternion. Acta Opt. Sin. 2019, 39, 1228006. [Google Scholar] [CrossRef]
- Eggert, D.W.; Lorusso, A.; Fisher, R.B. Estimating 3D rigid body transformations: A comparison of four major algorithms. Mach. Vis. Appl. 1997, 9, 272–290. [Google Scholar] [CrossRef]
- Hartley, R.I.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Hamilton, W.R. On quaternions, or on a new system of imaginaries in algebra. Philos. Mag. 1844, 25, 489–495. [Google Scholar]
- Sanso, F. An exact solution of the roto-translation problem. Photogrammetria 1973, 29, 203–216. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Chen, Y.; Zheng, D.H. A quaternions-based geodetic datum transformation algorithm. J. Geod. 2006, 80, 233–239. [Google Scholar] [CrossRef]
- Zeng, H.; Yi, Q. Quaternion-Based Iterative Solution of Three-Dimensional Coordinate Transformation Problem. J. Comput. 2011, 6, 1361–1368. [Google Scholar] [CrossRef]
- Joseph, J.; Laviola, J. A comparison of unscented and extended Kalman filtering for estimating quaternions motion. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 3, pp. 2435–2440. [Google Scholar]
- Kim, A.; Golnaraghi, M.F. A quaternion-based orientation estimation algorithm using an inertial measurement unit. In Proceedings of the IEEE Position Location and Navigation Symposium, Monterey, CA, USA, 26–29 April 2004; pp. 268–272. [Google Scholar]
- Mazaheri, M.; Habib, A. Quaternion-Based Solutions for the Single Photo Resection Problem. Photogramm. Eng. Remote Sens. 2015, 81, 209–217. [Google Scholar]
- Mercan, H.; Akyilmaz, O.; Aydin, C. Solution of the weighted symmetric similarity transformations based on quaternions. J. Geod. 2018, 92, 1113–1130. [Google Scholar] [CrossRef]
- Uygur, S.Ö.; Aydin, C.; Akyilmaz, O. Retrieval of Euler rotation angles from 3D similarity transformation based on quaternions. J. Spat. Sci. 2020. [Google Scholar] [CrossRef]
- Daniilidis, K. Hand-Eye Calibration Using Dual Quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [Google Scholar] [CrossRef]
- Prošková, J. Application of dual quaternions algorithm for geodetic datum transformation. J. Appl. Math. 2011, 4, 225–236. [Google Scholar]
- Prošková, J. Discovery of Dual Quaternions for Geodesy. J. Geom. Graph. 2012, 16, 195–209. [Google Scholar]
- Renaudin, E.; Habib, A.; Kersting, A. Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data. ETRI J. 2011, 33, 517–527. [Google Scholar] [CrossRef]
- Bartoli, A.; Sturm, P. The 3D Line Motion Matrix and Alignment of Line reconstructions. Int. J. Comput. Vis. 2004, 57, 159–178. [Google Scholar] [CrossRef] [Green Version]
No. | Reference Station | Unregistered Station | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Start Point (m) | End Point (m) | Start Point (m) | End Point (m) | |||||||||
x | y | z | x | y | z | x | y | z | x | y | z | |
01 | −47.545 | −29.207 | 23.066 | −48.845 | −27.906 | 23.054 | −54.468 | −39.362 | 13.116 | −55.010 | −37.361 | 13.019 |
02 | −72.672 | −8.306 | 25.901 | −68.763 | −4.408 | 25.915 | −66.382 | −8.682 | 13.949 | −60.446 | −7.021 | 15.317 |
03 | −49.959 | 14.310 | 25.545 | −49.906 | 14.262 | 18.937 | −36.241 | −0.278 | 20.528 | −34.627 | −0.217 | 13.396 |
04 | −49.903 | 14.328 | 22.703 | −74.119 | 38.575 | 22.390 | −42.692 | 26.285 | 16.339 | −44.524 | 33.100 | 15.991 |
05 | −58.342 | 22.763 | 25.800 | −62.807 | 27.248 | 25.733 | −39.251 | 10.796 | 20.250 | −41.006 | 17.368 | 19.910 |
06 | −63.026 | 27.457 | 18.813 | −63.000 | 27.423 | 14.990 | −39.544 | 17.731 | 13.030 | −38.725 | 17.757 | 9.383 |
07 | −59.337 | 23.730 | 22.619 | −62.802 | 27.215 | 22.561 | −39.004 | 12.439 | 17.069 | −40.287 | 17.253 | 16.816 |
Scheme | Residuals of Direction and Root Mean Square Error (RMSE) | Residuals of Moments and RMSE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Δlx | Δly | Δlz | σΔl | Δmx(m) | Δmy(m) | Δmz(m) | σΔm | ||||||
The proposed method | −7.1912 | 10.3722 | 30.1850 | −22.9783 29.4059 −2.2872 | 1.0003 | 0.0005 | 0.0005 | 0.0001 | 0.0005 | −0.0074 | 0.0207 | −0.0077 | 0.0236 |
−0.0002 | 0.0002 | 0.0003 | 0.0018 | 0.0059 | −0.0081 | ||||||||
0.0001 | −0.0002 | 0.0000 | 0.0147 | 0.0022 | 0.0100 | ||||||||
−0.0002 | −0.0002 | 0.0003 | 0.0178 | 0.0181 | 0.0207 | ||||||||
−0.0002 | −0.0002 | −0.0001 | 0.0036 | −0.009 | 0.0134 | ||||||||
−0.0004 | 0.0002 | −0.0000 | 0.0024 | −0.0078 | 0.0001 | ||||||||
0.0001 | 0.0001 | −0.0005 | −0.0134 | −0.0262 | −0.0102 | ||||||||
Wang et al. [8] | −7.1912 | 10.3722 | 30.1850 | −22.9774 29.4015 −2.2971 | 1.0001 | 0.0005 | 0.0005 | 0.0001 | 0.0005 | −0.0128 | 0.0155 | 0.0004 | 0.0251 |
−0.0002 | 0.0002 | 0.0003 | −0.0032 | 0.0109 | −0.011 | ||||||||
0.0001 | −0.0002 | 0.0000 | 0.0089 | 0.0040 | 0.0100 | ||||||||
−0.0002 | −0.0002 | 0.0003 | 0.0124 | 0.0128 | 0.0260 | ||||||||
−0.0002 | −0.0002 | −0.0001 | −0.0015 | −0.0141 | 0.0188 | ||||||||
−0.0004 | 0.0002 | −0.0000 | −0.0021 | −0.0047 | 0.0000 | ||||||||
0.0001 | 0.0001 | −0.0005 | −0.0188 | −0.0315 | −0.0048 | ||||||||
He and Habib [11] | −7.1912 | 10.3722 | 30.1850 | −22.9816 29.3978 −2.2882 | 0.9999 | 0.0005 | 0.0005 | 0.0001 | 0.0005 | −0.0148 | 0.0149 | −0.0133 | 0.0261 |
−0.0002 | 0.0002 | 0.0003 | −0.0042 | 0.0105 | −0.0151 | ||||||||
0.0001 | −0.0002 | 0.0000 | 0.0080 | −0.0017 | 0.0115 | ||||||||
−0.0002 | −0.0002 | 0.0003 | 0.0111 | 0.0135 | 0.0218 | ||||||||
−0.0002 | −0.0002 | −0.0001 | −0.0038 | −0.0140 | 0.0147 | ||||||||
−0.0004 | 0.0002 | −0.0000 | −0.0086 | −0.0138 | 0.0023 | ||||||||
0.0001 | 0.0001 | −0.0005 | −0.0201 | −0.0308 | −0.0091 |
Scheme No. | (m) | Remarks | ||||||
---|---|---|---|---|---|---|---|---|
1 | −7.1912 | 10.3722 | 30.1850 | −22.9783, 29.4059, −2.2872 | 1.0003 | 0.0005 | 0.0236 | Unscaled |
2 | −7.1912 | 10.3722 | 30.1850 | −22.9783, 29.4059, −2.2872 | 2.0006 | 0.0005 | 0.0236 | Scaled |
Scheme No. | (m) | ||||
---|---|---|---|---|---|
Linear feature-based solution | −7.1912 | 10.3722 | 30.1850 | −22.9783, 29.4059, −2.2872 | 1.0003 |
Planar feature-based solution | −7.2255 | 10.4150 | 30.1855 | −22.9640, 29.3923, −2.3368 | 1.0015 |
No. | Reference Station | Unregistered Station | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Start Point (m) | End Point (m) | Start Point (m) | End Point (m) | |||||||||
x | y | z | x | y | z | x | y | z | x | y | z | |
01 | −11.902 | −35.494 | 18.605 | −13.895 | −35.333 | 18.583 | −34.570 | −14.531 | 18.602 | −35.778 | −12.937 | 18.579 |
02 | −14.394 | −30.403 | 17.335 | −14.415 | −30.410 | 19.335 | −32.256 | −9.513 | 17.183 | −32.276 | −9.502 | 19.183 |
03 | −14.547 | −31.929 | 8.425 | −14.235 | −29.953 | 8.434 | −33.432 | −10.379 | 8.427 | −31.751 | −9.296 | 8.435 |
04 | −16.213 | −29.956 | 8.412 | −18.170 | −29.543 | 8.393 | −33.375 | −7.446 | 8.407 | −34.372 | −5.713 | 8.386 |
05 | −21.598 | −28.813 | 6.901 | −21.623 | −28.822 | 8.900 | −35.872 | −3.086 | 6.991 | −35.898 | −3.072 | 8.991 |
06 | −30.572 | −22.928 | 8.222 | −28.616 | −23.342 | 8.246 | −37.462 | 7.522 | 8.210 | −36.467 | 5.788 | 8.235 |
07 | −28.655 | −23.350 | 12.107 | −28.683 | −23.344 | 14.106 | −36.504 | 5.821 | 12.414 | −36.522 | 5.845 | 14.414 |
08 | −33.238 | −26.446 | 18.394 | −35.195 | −26.035 | 18.373 | −42.036 | 7.468 | 18.376 | −43.034 | 9.201 | 18.355 |
09 | −37.239 | −25.598 | 17.456 | −37.257 | −25.608 | 19.455 | −43.896 | 10.722 | 17.327 | −43.918 | 10.729 | 19.327 |
Scheme | Residuals of Direction and Root Mean Square Error (RMSE) | Residuals of Moments and RMSE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Δlx | Δly | Δlz | σΔl | Δmx(m) | Δmy(m) | Δmz(m) | σΔm | ||||||
The proposed method | −0.0156 | 0.0449 | 48.2160 | −0.0043 −0.0070 −0.0182 | 1.0002 | −0.0000 | −0.0003 | 0.0001 | 0.0006 | 0.0033 | 0.0054 | 0.0025 | 0.0175 |
−0.0003 | −0.0003 | −0.0000 | 0.0039 | −0.0069 | −0.0052 | ||||||||
−0.0004 | 0.0001 | 0.0000 | 0.0026 | −0.0035 | −0.0111 | ||||||||
0.0001 | 0.0003 | 0.0004 | −0.0151 | 0.0126 | −0.0003 | ||||||||
0.0002 | −0.0003 | 0.0000 | 0.0045 | −0.0044 | 0.0133 | ||||||||
−0.0001 | −0.0003 | 0.0003 | −0.0042 | 0.0058 | 0.0024 | ||||||||
0.0000 | 0.0008 | −0.0000 | −0.0087 | −0.0048 | −0.0222 | ||||||||
0.0000 | 0.0001 | −0.0007 | 0.0162 | −0.0166 | −0.0028 | ||||||||
0.0005 | −0.0002 | 0.0000 | 0.0016 | 0.0041 | 0.0193 | ||||||||
Wang et al. [8] | −0.0156 | 0.0449 | 48.2160 | −0.0024 −0.0095 −0.0213 | 1.0001 | −0.0000 | −0.0003 | 0.0001 | 0.0006 | 0.0029 | 0.0007 | 0.0016 | 0.0181 |
−0.0003 | −0.0003 | −0.0000 | 0.0038 | −0.0038 | −0.0052 | ||||||||
−0.0004 | 0.0001 | 0.0000 | −0.0012 | −0.0029 | −0.0142 | ||||||||
0.0001 | 0.0003 | 0.0004 | −0.0158 | 0.0088 | −0.0011 | ||||||||
0.0002 | −0.0003 | 0.0000 | 0.0045 | −0.0007 | 0.0133 | ||||||||
−0.0001 | −0.0003 | 0.0003 | −0.0034 | 0.0096 | 0.0028 | ||||||||
0.0000 | 0.0008 | −0.0000 | −0.0082 | −0.0004 | −0.0222 | ||||||||
0.0000 | 0.0001 | −0.0007 | 0.0152 | −0.0212 | −0.0035 | ||||||||
0.0005 | −0.0002 | 0.0000 | 0.0019 | 0.0092 | 0.0193 | ||||||||
He and Habib [11] | −0.0156 | 0.0449 | 48.2160 | −0.0023 −0.0088 −0.0213 | 1.0001 | −0.0000 | −0.0003 | 0.0001 | 0.0006 | 0.0030 | 0.0007 | 0.0011 | 0.0182 |
−0.0003 | −0.0003 | −0.0000 | 0.0032 | −0.0037 | −0.0052 | ||||||||
−0.0004 | 0.0001 | 0.0000 | −0.0011 | −0.0029 | −0.0142 | ||||||||
0.0001 | 0.0003 | 0.0004 | −0.0158 | 0.0088 | −0.0017 | ||||||||
0.0002 | −0.0003 | 0.0000 | 0.0039 | −0.0006 | 0.0133 | ||||||||
−0.0001 | −0.0003 | 0.0003 | −0.0034 | 0.0096 | 0.0034 | ||||||||
0.0000 | 0.0008 | −0.0000 | −0.0088 | −0.0004 | −0.0222 | ||||||||
0.0000 | 0.0001 | −0.0007 | 0.0153 | −0.0211 | −0.0041 | ||||||||
0.0005 | −0.0002 | 0.0000 | 0.0013 | 0.0092 | 0.0193 |
Scheme No. | (m) | Remarks | ||||||
---|---|---|---|---|---|---|---|---|
1 | −0.0156 | 0.0449 | 48.2160 | −0.0024, −0.0095, −0.0213 | 1.0002 | 0.0006 | 0.0175 | Unscaled |
2 | −0.0156 | 0.0449 | 48.2160 | −0.0024, −0.0095, −0.0213 | 2.0004 | 0.0006 | 0.0175 | Scaled |
Scheme No. | (m) | ||||
---|---|---|---|---|---|
Linear feature-based solution | −0.0156 | 0.0449 | 48.2160 | −0.0024, −0.0095, −0.0213 | 1.0002 |
Planar feature-based solution | −0.0074 | 0.0467 | 48.1795 | 0.0444, 0.0159, −0.0396 | 1.0015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zheng, N.; Bian, Z.; Zhang, H. A Closed-Form Solution to Linear Feature-Based Registration of LiDAR Point Clouds. Remote Sens. 2021, 13, 3571. https://doi.org/10.3390/rs13183571
Wang Y, Zheng N, Bian Z, Zhang H. A Closed-Form Solution to Linear Feature-Based Registration of LiDAR Point Clouds. Remote Sensing. 2021; 13(18):3571. https://doi.org/10.3390/rs13183571
Chicago/Turabian StyleWang, Yongbo, Nanshan Zheng, Zhengfu Bian, and Hua Zhang. 2021. "A Closed-Form Solution to Linear Feature-Based Registration of LiDAR Point Clouds" Remote Sensing 13, no. 18: 3571. https://doi.org/10.3390/rs13183571
APA StyleWang, Y., Zheng, N., Bian, Z., & Zhang, H. (2021). A Closed-Form Solution to Linear Feature-Based Registration of LiDAR Point Clouds. Remote Sensing, 13(18), 3571. https://doi.org/10.3390/rs13183571