Changes in Nutrient Concentrations in Shenzhen Bay Detected Using Landsat Imagery between 1988 and 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Measurement Data
2.3. Remote-Sensing Data and Preprocessing
2.4. Method of Model Building
3. Results
3.1. Modeling
- Single-band form;
- Multi-band form;
- Band-ratio (combination) form.
3.2. Temporal and Spatial Distributions of Concentration Retrievals
3.3. Time-Series Analysis
4. Discussion
4.1. Monitoring Water Quality of the Rivers Flowing into SZB
4.2. Impact of Oyster Rafts
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, L.; Onyx, W.; Wai, H.; Chen, X.; Liu, Y.; Feng, L.; Li, J.; Huang, J. Assessment of total suspended sediment distribution under varying tidal conditions in deep bay: Initial results from HJ1A/1B satellite CCD images. Remote Sens. 2014, 6, 9911–9929. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, Y.S.; Liu, Z.; Yin, K.; Li, Z.; Wai, O.W.; King, B. Integration of multi-source data for water quality classification in the Pearl River estuary and its adjacent coastal waters of Hong Kong. Cont. Shelf Res. 2004, 24, 1827–1843. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Chinese Sea Water Quality Standard (GB 3097-1997). 1998. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/199807/t19980701_66499.shtml (accessed on 7 December 2020).
- Shenzhen Municipal Planning and Natural Resources Bureau. Shenzhen Municipal Marine Environmental Quality Bulletin. 2019. Available online: http://meeb.sz.gov.cn/xxgk/tjsj/ndhjzkgb/content/post_7259599.html (accessed on 30 April 2020).
- HKEPD. Regional Collaboration with Shenzhen in Deep Bay (Shenzhen Bay). 2020. Available online: https://www.epd.gov.hk/epd/english/environmentinhk/water/hkwqrc/regional/deepbay.html (accessed on 7 December 2020).
- Li, X.F.; Liu, B.; Zheng, G.; Ren, Y.B.; Zhang, S.S.; Liu, Y.J.; Gao, L.; Liu, Y.H.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, L.; Ma, R.; Cao, Z. Remote sensing estimation of lake total phosphorus concentration based on MODIS: A case study of Lake Hongze. Remote Sens. 2019, 11, 2068. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Li, Y.; Lyu, H.; Liu, N.; Zheng, Z.; Li, Y. Remote estimation of total phosphorus concentration in the Taihu Lake using a semi-analytical model. Int. J. Remote Sens. 2020, 41, 7993–8013. [Google Scholar] [CrossRef]
- Tu, M.; Smith, P.K.; Filippi, A.M. Hybrid forward-selection method-based water-quality estimation via combining Landsat TM, ETM+, and OLI/TIRS images and ancillary environmental data. PLoS ONE 2018, 13, e0201255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortula, M.; Ali, T.; Bachir, A.; Elaksher, A.; Abouleish, M. Towards monitoring of nutrient pollution in coastal lake using remote sensing and regression analysis. Water 2020, 12, 1954. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, F.; Ge, X.; Zhang, X.; Chan, N.W.; Qi, Y. Measurement of total nitrogen concentration in surface water using hyperspectral band observation method. Water 2020, 12, 1842. [Google Scholar] [CrossRef]
- Ding, C.; Pu, F.; Li, C.; Xu, X. Combining artificial neural networks with causal inference for total phosphorus concentration estimation and sensitive spectral bands exploration using MODIS. Water 2020, 12, 2372. [Google Scholar] [CrossRef]
- Jiang, Q.; Xu, L.; Sun, S.; Wang, M.; Xiao, H. Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms—A case study in the Miyun Reservoir, China. Ecol. Indic. 2021, 124, 107356. [Google Scholar]
- Sinshaw, T.A.; Surbeck, C.Q.; Yasarer, H.; Najjar, Y. Artificial neural network for prediction of total nitrogen and phosphorus in US lakes. J. Environ. Eng. 2019, 145, 0001528. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, M.; Nichol, J.E. Combining Landsat TM/ETM+ and HJ-1 A/B CCD sensors for monitoring coastal water quality in Hong Kong. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1898–1902. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. J. Hydrol. 2016, 532, 80–89. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S. Measurement of coastal water quality indicators using Sentinel-2; An evaluation over Hong Kong and the Pearl River Estuary. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Liu, H.; Wu, G.; Shi, T.; Hu, Z.; Zhou, Q. Estimating orthophosphate phosphorus concentration in Shenzhen Bay with remote sensing and legacy in situ measurements. In Proceedings of the 2016 4th International Workshop on EORSA, Guangzhou, China, 4 July–6 July 2016. [Google Scholar]
- Yan, J.Z.; Xu, Z.B.; Yu, H.X.; Gao, K.L. Application of a Hybrid Optimized BP Network Model to Estimate Water Quality Parameters of Beihai Lake in Beijing. Appl. Sci. 2019, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.Y.; Zhang, Y.X.; Zhu, X.; Zheng, M. Effects of rainfall-run off pollution on eutrophication in coastal zone: A case study in Shenzhen Bay, southern China. Hydrol. Res. 2019, 50, 1062–1075. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Xu, N. Satellite-based monitoring of annual coastal reclamation in Shenzhen and Hong Kong since the 21st Century: A comparative study. J. Mar. Sci. Eng. 2021, 9, 48. [Google Scholar] [CrossRef]
- HKEPD. Marine Water Quality in Hong Kong in 2018. 2018. Available online: https://www.epd.gov.hk/epd/sites/default/files/epd/english/environmentinhk/water/hkwqrc/files/waterquality/annual-report/marinereport2018.pdf (accessed on 7 December 2020).
- Li, J.; Gao, S.; Wang, Y. Delineating suspended sediment concentration patterns in surface waters of the Changjiang Estuary by remote sensing analysis. Acta Oceanol. Sin. 2010, 29, 38–47. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Kuchinke, C.P.; Gordon, H.R.; Franz, B.A. Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance. Remote Sens. Environ. 2009, 113, 571–587. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, Q.; Werner, A.D.; Yao, J. Investigating a complex lake-catchment-river system using artificial neural networks: Poyang Lake (China). Hydrol. Res. 2015, 46, 912–928. [Google Scholar] [CrossRef]
- Deng, L.; Zhou, W.; Cao, W.; Zheng, W.; Zhao, W. Retrieving phytoplankton size class from the absorption coefficient and chlorophyll A concentration based on support vector machine. Remote Sens. 2019, 11, 1054. [Google Scholar] [CrossRef] [Green Version]
- Dunea, D.; Iordache, S. Artificial Neural Networks; Garcia Rosa, J.L., Ed.; Intech: Rijeka, Croatia, 2016; Volume 11, pp. 290–307. ISBN 978-953-51-2705-5. [Google Scholar]
- Shenzhen Water Affairs Bureau. CCTV’s “Focus Interview” Focuses on Shenzhen’s Water Pollution Control and Sees Practical Results. 2020. Available online: http://www.sz.gov.cn/cn/xxgk/zfxxgj/zwdt/content/post_7811034.html (accessed on 22 June 2020).
- Turner, J.S.; Kellogg, M.L.; Massey, G.M.; Friedrichs, C.T. Minimal effects of oyster aquaculture on local water quality: Examples from southern Chesapeake Bay. PLoS ONE 2019, 14, 31697739. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.Q.; Gan, J.P. Mitigation of Eutrophication and Hypoxia through Oyster Aquaculture: An Ecosystem Model Evaluation off the Pearl River Estuary. Environ. Sci. Technol. 2021, 55, 5506–5514. [Google Scholar] [CrossRef]
- Bricker, S.B.; Grizzle, R.E.; Trowbridge, P.; Rose, J.M.; Ferreira, J.G.; Wellman, K.; Zhu, C.B.; Galimany, E.; Wikfors, G.H.; Saurel, C.; et al. Bioextractive Removal of Nitrogen by Oysters in Great Bay Piscataqua River Estuary, New Hampshire, USA. Estuaries Coasts 2020, 43, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.X.; Li, X.D.; Li, Y.S.; Wai, W.; Wai, O.W.H. Characteristics of metal enrichment in Deep Bay. J. Environ. Sci. 2004, 16, 9–12. [Google Scholar]
Path | 122 | Row | 44 |
---|---|---|---|
Landsat-5 | Landsat-8 | ||
24 November 1988 | 4 July 2000 | 9 August 2013 | 18 February 2020 |
10 December 1988 | 21 August 2000 | 29 November 2013 | 16 November 2020 |
11 November 1989 | 18 January 2003 | 31 December 2013 | 2 December 2020 |
13 December 1989 | 13 July 2003 | 16 January 2014 | |
5 December 1992 | 17 October 2003 | 15 October 2014 | |
22 September 1994 | 19 October 2004 | 16 November 2014 | |
8 October 1994 | 22 October 2005 | 3 January 2015 | |
25 November 1994 | 11 February 2006 | 19 January 2015 | |
9 September 1995 | 10 November 2006 | 18 October 2015 | |
3 March 1996 | 13 January 2007 | 7 February 2016 | |
7 June 1996 | 29 January 2007 | 26 March 2016 | |
9 July 1996 | 26 July 2008 | 5 November 2016 | |
25 May1997 | 15 November 2008 | 7 December 2016 | |
13 June 1998 | 17 October 2009 | 20 August 2017 | |
15 July 1998 | 4 December 2009 | 23 October 2017 | |
4 November 1998 | 13 March 2011 | 12 February 2018 | |
7 January 1999 | 1 June 2011 | 1 April 2018 | |
8 February 1999 | 4 August 2011 | 19 May 2018 | |
9 December 1999 | 14 November 2019 |
Landsat-5 TM | DIN | PO4_P | Landsat-8 OLI | DIN | PO4_P |
---|---|---|---|---|---|
b(Blue), b(Green), b(Red), b(NIR) | 0.58 | 0.65 | b(Coastal), b(Blue), b(Green), b(Red), b(NIR) | 0.78 | 0.84 |
b(Blue)/b(Red) | 0.39 | 0.42 | b(Red)/b(Coastal) | 0.56 | 0.57 |
b(Blue)/b(NIR) | 0.30 | 0.26 | b(Coastal), b(Red) | 0.55 | 0.64 |
b(Green)/b(Red) | 0.34 | 0.34 | b(Red), b(NIR) | 0.50 | 0.66 |
b(Green)/b(NIR) | 0.22 | 0.18 | b(Coastal)/b(Red) | 0.47 | 0.51 |
b(Red)/b(Blue) | 0.47 | 0.43 | b(Blue), b(Red) | 0.41 | 0.55 |
b(Red)/b(Green) | 0.43 | 0.42 | b(Blue), b(Green) | 0.39 | 0.48 |
b(NIR)/b(Blue) | 0.47 | 0.33 | b(Coastal), b(Green) | 0.39 | 0.42 |
b(NIR)/b(Green) | 0.42 | 0.30 | b(Red)/b(Blue) | 0.38 | 0.45 |
b(SWIR)/b(Blue) | 0.14 | 0.04 | b(Green), b(Red) | 0.35 | 0.51 |
Parameter | Location | Slope | Intercept | R2 |
---|---|---|---|---|
DIN | Inner Bay | −0.0766 | 5.2072 | 0.0531 |
Outer Bay | −0.0422 | 1.2784 | 0.2443 | |
PO4_P | Inner Bay | 0.0077 | 0.4246 | 0.1101 |
Outer Bay | −0.0004 | 0.0412 | 0.0351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wang, D.; Gong, F.; Bai, Y.; He, X. Changes in Nutrient Concentrations in Shenzhen Bay Detected Using Landsat Imagery between 1988 and 2020. Remote Sens. 2021, 13, 3469. https://doi.org/10.3390/rs13173469
Huang J, Wang D, Gong F, Bai Y, He X. Changes in Nutrient Concentrations in Shenzhen Bay Detected Using Landsat Imagery between 1988 and 2020. Remote Sensing. 2021; 13(17):3469. https://doi.org/10.3390/rs13173469
Chicago/Turabian StyleHuang, Jingjing, Difeng Wang, Fang Gong, Yan Bai, and Xianqiang He. 2021. "Changes in Nutrient Concentrations in Shenzhen Bay Detected Using Landsat Imagery between 1988 and 2020" Remote Sensing 13, no. 17: 3469. https://doi.org/10.3390/rs13173469
APA StyleHuang, J., Wang, D., Gong, F., Bai, Y., & He, X. (2021). Changes in Nutrient Concentrations in Shenzhen Bay Detected Using Landsat Imagery between 1988 and 2020. Remote Sensing, 13(17), 3469. https://doi.org/10.3390/rs13173469