Estimating the Gross Primary Production and Evapotranspiration of Rice Paddy Fields in the Sub-Tropical Region of China Using a Remotely-Sensed Based Water-Carbon Coupled Model
Abstract
:1. Introduction
2. Study Site and Data Processing
2.1. Study Site
2.2. Eddy Covariance Measurements and Meteorology Data at the Xiangtang Station
2.3. Regional Data
3. The PML-V2 Model
3.1. The Estimation of GPP
3.2. The Estimation of ET
3.3. Biophysical Conductance Model
3.4. Model Calibration and Validation
4. Results
4.1. GPP and ET Fluxes of RICE Paddy Field at the Site-Level
4.2. Seasonal Variations in the Key Parameters of the PML-V2 Model for the Early Rice and Late Rice Ecosystems
4.3. Model Evaluation at the Xiangtang Station
4.4. Regional Estimation of GPP and ET Using the PML-V2 Model
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture: Towards 2030/2050—The 2012 Revision; No. 12–03ESA working paper; FAO: Rome, Italy, 2012. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Teams on International Investment and Tropical fruits Trade and Market Division. Banana Market Review: Preliminary Results. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 July 2019).
- Li, C.; Mosier, A.; Wassmann, R.; Cai, Z.; Zheng, X.; Huang, Y.; Tsuruta, H.; Boonjawat, J.; Lantin, R. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.; Arkebauer, T.J.; Suyker, A.E.; Gonçalves, I.Z. Water productivity and crop yield: A simplified remote sensing driven operational approach. Agric. For. Meteorol. 2018, 249, 501–511. [Google Scholar] [CrossRef]
- Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260, 300–320. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Sasai, T.; Nakai, S.; Setoyama, Y.; Ono, K.; Kato, S.; Mano, M.; Murakami, K.; Miyata, A.; Saigusa, N.; Nemani, R.R.; et al. Analysis of the spatial variation in the net ecosystem production of rice paddy fields using the diagnostic biosphere model, BEAMS. Ecol. Model. 2012, 247, 175–189. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Thornley, J.H.M. Mathematical Models in Plant Physiology: A Quantitative Approach to Problems in Plant and Crop Physiology; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Wang, Z.; Xiao, X.; Yan, X. Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agric. For. Meteorol. 2010, 150, 1160–1167. [Google Scholar] [CrossRef]
- Yan, H.; Fu, Y.; Xiao, X.; Huang, H.Q.; He, H.; Ediger, L. Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agric. Ecosyst. Environ. 2009, 129, 391–400. [Google Scholar] [CrossRef]
- Boschetti, M.; Stroppiana, D.; Confalonieri, R.; Brivio, P.A.; Crema, A.; Bocchi, S. Estimation of rice production at regional scale with a Light Use Efficiency model and MODIS time series. Ital. J. Remote Sens. Riv. Ital. Telerilevamento 2011, 43, 63–81. [Google Scholar]
- Zhang, N.; Su, X.; Zhang, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring daily variation of leaf layer photosynthesis in rice using UAV-based multi-spectral imagery and a light response curve model. Agric. For. Meteorol. 2020, 291, 108098. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Zhang, Y. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric. For. Meteorol. 2002, 111, 109–120. [Google Scholar] [CrossRef]
- Leng, G.; Huang, M.; Tang, Q.; Sacks, W.J.; Lei, H.; Leung, L.R. Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters. J. Geophys. Res. Atmos. 2013, 118, 9789–9803. [Google Scholar] [CrossRef]
- Gan, G.; Liu, Y.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Sci. Rev. 2020, 212, 103451. [Google Scholar] [CrossRef]
- Acreman, M.C.; Harding, R.J.; Lloyd, C.R.; McNeil, D.D. Evaporation characteristics of wetlands: Experience from a wet grassland and a reedbed using eddy correlation measurements. Hydrol. Earth Syst. Sci. 2003, 7, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Huang, Y.; Jia, Z.; Liu, H.; Song, T.; Wang, Y.; Shi, L.; Song, C.; Wang, Y. Effects of the conversion of marshland to cropland on water and energy exchanges in northeastern China. J. Hydrol. 2008, 355, 181–191. [Google Scholar] [CrossRef]
- Qiu, R.; Liu, C.; Cui, N.; Wu, Y.; Wang, Z.; Li, G. Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agric. Water Manag. 2019, 224, 105755. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat-Flux and Evaporation Using Large-Scale Parameters. Mon. Weather. Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Qiu, R.; Katul, G.G.; Wang, J.; Xu, J.; Kang, S.; Liu, C.; Zhang, B.; Li, L.; Cajucom, E.P. Differential response of rice evapotranspiration to varying patterns of warming. Agric. For. Meteorol. 2020, 298, 108293. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Yang, S.; Qi, Z.; Wang, Y. Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation. Agric. Water Manag. 2017, 182, 55–66. [Google Scholar] [CrossRef]
- Jiang, C.; Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 2016, 186, 528–547. [Google Scholar] [CrossRef]
- Luo, X.; Chen, J.M.; Liu, J.; Black, T.A.; Croft, H.; Staebler, R.; He, L.; Arain, M.A.; Chen, B.; Mo, G.; et al. Comparison of Big-Leaf, Two-Big-Leaf, and Two-Leaf Upscaling Schemes for Evapotranspiration Esti-mation Using Coupled Carbon-Water Modeling. J. Geophys. Res. Biogeosci. 2018, 123, 207–225. [Google Scholar] [CrossRef]
- Miner, G.L.; Bauerle, W.L.; Baldocchi, D. Estimating the sensitivity of stomatal conductance to photosynthesis: A review. Plant Cell Environ. 2017, 40, 1214–1238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.; McVicar, T.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.; Yu, Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian eco-systems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Gan, G.; Liu, Y.; Pan, X.; Zhao, X.; Li, M.; Wang, S. Testing the Symmetric Assumption of Complementary Relationship: A Comparison between the Linear and Nonlinear Advection-Aridity Models in a Large Ephemeral Lake. Water 2019, 11, 1574. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Zhang, Q.; Liu, J.; Li, X.; Xu, C.-Y. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Shi, Y.Z. Variations of H2O/CO2 and the Mechanism of Environmental Response in Two Typical Farmland Ecosystems of China. Ph.D. Thesis, Wuhan University, Wuhan, China, 2015. [Google Scholar]
- Aubinet, M.; Chermanne, B.; Vandenhaute, M.; Longdoz, B.; Yernaux, M.; Laitat, E. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric. For. Meteorol. 2001, 108, 293–315. [Google Scholar] [CrossRef]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance tech-nique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Foken, T.; Göockede, M.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Post-Field Data Quality Control. In Handbook of Micrometeorology; Springer: Dordrecht, The Netherlands, 2006; pp. 181–208. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Massman, W. A simple method for estimating frequency response corrections for eddy covariance systems. Agric. For. Meteorol. 2000, 104, 185–198. [Google Scholar] [CrossRef]
- Moncrieff, J.; Clement, R.; Finnigan, J.; Meyers, T. Averaging, detrending, and filtering of eddy covariance time series. In Handbook of Micrometeorology: A Guide for surface flux measurement and analysis. In Handbook of Micrometeorology; Springer: Dordrecht, The Netherlands, 2004; pp. 7–31. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of Flux Measurements for Density Effects Due to Heat and Wa-ter-Vapor Transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Reichstein, M.; Tenhunen, J.D.; Roupsard, O.; Ourcival, J.-M.; Rambal, S.; Dore, S.; Valentini, R. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Funct. Ecol. 2002, 16, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Heusinkveld, B.; Jacobs, A.; Holtslag, A.; Berkowicz, S. Surface energy balance closure in an arid region: Role of soil heat flux. Agric. For. Meteorol. 2004, 122, 21–37. [Google Scholar] [CrossRef]
- Twine, T.; Kustas, W.; Norman, J.; Cook, D.; Houser, P.; Meyers, T.; Prueger, J.; Starks, P.; Wesely, M. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, A.; et al. Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol. 2001, 107, 71–77. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 2000, 21, 1911–1917. [Google Scholar] [CrossRef]
- Norman, J.; Kustas, W.; Humes, K. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Gan, G.; Gao, Y. Estimating time series of land surface energy fluxes using optimized two source energy balance schemes: Model formulation, calibration, and validation. Agric. For. Meteorol. 2015, 208, 62–75. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Stewart, J. Modelling surface conductance of pine forest. Agric. For. Meteorol. 1988, 43, 19–35. [Google Scholar] [CrossRef]
- Gan, G.; Kang, T.; Yang, S.; Bu, J.; Feng, Z.; Gao, Y. An optimized two source energy balance model based on complementary concept and canopy con-ductance. Remote Sens. Environ. 2019, 223, 243–256. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Y.; Liu, Y.; Shi, P. Simulation of the Stomatal Conductance of Winter Wheat in Response to Light, Temperature and CO2 Changes. Ann. Bot. 2004, 93, 435–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katul, G.; Ellsworth, D.; Lai, C.-T. Modelling assimilation and intercellular CO2 from measured conductance: A synthesis of approaches. Plant Cell Environ. 2000, 23, 1313–1328. [Google Scholar] [CrossRef] [Green Version]
- Katul, G.; Manzoni, S.; Palmroth, S.; Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 2009, 105, 431–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Gan, G.; Liu, Y. Inferring transpiration from evapotranspiration: A transpiration indicator using the Priest-ley-Taylor coefficient of wet environment. Ecol. Indic. 2020, 110, 105853. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.; Sauer, T.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Gan, G.; Liu, Y.; Pan, X.; Zhao, X.; Li, M.; Wang, S. Seasonal and Diurnal Variations in the Priestley–Taylor Coefficient for a Large Ephemeral Lake. Water 2020, 12, 849. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tang, X.; Zheng, C.; Gu, Q.; Wei, J.; Ma, M. Differences in ecosystem water-use efficiency among the typical croplands. Agric. Water Manag. 2018, 209, 142–150. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Kumar, A.; Padre, A.; Amante, M. CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agric. For. Meteorol. 2009, 149, 1737–1750. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Hatano, R.; Kumar, A.; Padre, A.; Amante, M. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric. Water Manag. 2011, 98, 1417–1430. [Google Scholar] [CrossRef]
Periods | Date | Plantation | Growing Stages of Rice |
---|---|---|---|
P1 | 01/10/2016–24/10/2016 | Late Rice | Grouting and ripeness |
P2 | 25/10/2016–23/03/2017 | Chinese milk vetch | |
P3 | 24/03/2017–23/04/2017 | Early Rice | Rice seedling transplant and resume growth |
P4 | 24/04/2017–23/05/2017 | Resume growth before jointing | |
P5 | 24/05/2017–23/06/2017 | Jointing, booting, heading, and blooming | |
P6 | 24/06/2017–14/07/2017 | Grouting and ripeness | |
P7 | 15/07/2017–23/08/2017 | Late Rice | Rice seedling transplant and resume growth |
P8 | 24/08/2017–24/09/2017 | Jointing, booting, heading, and blooming | |
P9 | 25/09/2017–24/10/2017 | Grouting and ripeness | |
P10 | 25/10/2017–23/03/2018 | Chinese milk vetch | |
P11 | 24/03/2018–23/04/2018 | Early Rice | Rice seedling transplant and resume growth |
P12 | 24/04/2018–23/05/2018 | Resume growth before jointing | |
P13 | 24/05/2018–23/06/2018 | Jointing, booting, heading, and blooming | |
P14 | 24/06/2018–14/07/2018 | Grouting and ripeness | |
P15 | 15/07/2018–23/08/2018 | Late Rice | Rice seedling transplant and resume growth |
P16 | 24/08/2018–24/09/2018 | Jointing, booting, heading, and blooming | |
P17 | 25/09/2018–24/10/2018 | Grouting and ripeness | |
P18 | 25/10/2018–31/10/2018 | Chinese milk vetch |
Parameters | Definition | Ranges |
---|---|---|
Vm25 | The notional maximum catalytic capacity of Rubisco per unit leaf area at 25 °C | 10–120 µmol m−2 s−1 |
β | The initial slope of the response curve of assimilation rate of leaves to light (quantum efficiency) | 0.01–0.15 µmol CO2 (µmol PAR) −1 |
η | The initial slope of the response curve of assimilation rate of leaves to CO2 (carboxylation efficiency) | 0.01–0.15 µmol m−2 s−1 (µmol m−2 s−1)−1 |
Dmin | The threshold below which there is no vapor pressure constraint | 0.5–1.5 kPa |
Dmax | The threshold above which there is no assimilation | 3.5–6.5 kPa |
D0 | Water vapor pressure deficit of the air | 0.5–2.0 kPa |
KQ | Extinction coefficient of PAR | 0.1–1 |
KA | Extinction coefficient of available energy | 0.7–0.9 |
Sl | Specific canopy rainfall storage capacity per unit leaf area | 0.01–0.17 |
F0 | The specific ratio of average evaporation rate over average rainfall intensity during storms per unit of canopy cover | 0.01–0.16 |
αs * | Soil evaporation coefficient | 0.8–1.5 |
m | Stomatal conductance coefficient | 2.0–40.0 |
Early Rice | Late Rice | |||||
---|---|---|---|---|---|---|
GPP (gCm−2day−1) | ET (mm/day) | H (mm/day) | GPP (gCm−2day−1) | ET (mm/day) | H (mm/day) | |
2017 | 4.78 | 3.40 | 0.40 | 8.70 | 4.67 | 0.11 |
2018 | 6.02 | 4.06 | 0.42 | 7.91 | 4.96 | 0.06 |
2017 | 2018 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Early Rice | Late Rice | Early Rice | Late Rice | |||||||||||
Periods | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P11 | P12 | P13 | P14 | P15 | P16 | P17 |
D0 | 0.84 | 0.98 | 0.51 | 0.71 | 0.31 | 1.00 | 0.99 | 0.21 | 0.92 | 0.80 | 0.97 | 1.00 | 0.82 | 0.20 |
kq | 0.72 | 0.98 | 0.83 | 1.00 | 0.76 | 0.68 | 0.44 | 0.99 | 0.12 | 0.94 | 0.90 | 0.15 | 0.88 | 0.12 |
ka | 0.90 | 0.90 | 0.74 | 0.78 | 0.76 | 0.88 | 0.90 | 0.89 | 0.72 | 0.74 | 0.77 | 0.70 | 0.71 | 0.70 |
Sl | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.11 | 0.02 | 0.01 | 0.01 | 0.01 | 0.16 |
F0 | 0.05 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 |
β | 0.03 | 0.03 | 0.09 | 0.09 | 0.04 | 0.06 | 0.03 | 0.05 | 0.01 | 0.08 | 0.06 | 0.09 | 0.05 | 0.03 |
η | 0.01 | 0.05 | 0.14 | 0.10 | 0.02 | 0.02 | 0.09 | 0.05 | 0.13 | 0.15 | 0.07 | 0.01 | 0.15 | 0.04 |
m | 37.8 | 17.4 | 9.8 | 13.6 | 35.8 | 17.0 | 23.8 | 38.9 | 22.0 | 9.5 | 23.6 | 23.9 | 16.8 | 36.4 |
Vm25 | 36 | 23 | 108 | 81 | 115 | 56 | 23 | 30 | 90 | 119 | 115 | 83 | 26 | 41 |
Dmin | 0.69 | 1.50 | 0.71 | 1.02 | 1.46 | 1.39 | 1.36 | 0.84 | 1.39 | 1.09 | 0.78 | 1.50 | 1.40 | 0.67 |
Dmax | 3.56 | 3.67 | 3.50 | 3.52 | 4.31 | 3.66 | 6.13 | 5.93 | 6.01 | 5.55 | 6.33 | 6.08 | 5.72 | 5.61 |
αs | 0.98 | 1.34 | 1.28 | 1.27 | 1.13 | 1.50 | 0.81 | 1.06 | 0.97 | 1.22 | 0.99 | 0.80 | 1.34 | 1.50 |
Regression Equation | R2 | RMSE | ||
---|---|---|---|---|
Early rice | GPP | 14.14NDVI + 0.08 | 0.93 | 0.41 |
ET | 1.424NDVI + 0.016Rs↓ + 0.16Ta − 47.0 | 0.90 | 0.12 | |
T/ET | 1.068NDVI + 0.006u + 0.134 | 0.98 | 0.02 | |
WUE | 2.822NDVI + 0.165 | 0.82 | 0.14 | |
Late rice | GPP | 14.11NDVI − 0.005Ta | 0.94 | 0.43 |
ET | 2.177NDVI + 0.026 Rs↓ + 0.438u − 2.1 | 0.91 | 0.11 | |
T/ET | 0.933NDVI + 0.0006Ta + 0.03 | 0.97 | 0.02 | |
WUE | 2.418NDVI − 0.0003Ta | 0.87 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, G.; Zhao, X.; Fan, X.; Xie, H.; Jin, W.; Zhou, H.; Cui, Y.; Liu, Y. Estimating the Gross Primary Production and Evapotranspiration of Rice Paddy Fields in the Sub-Tropical Region of China Using a Remotely-Sensed Based Water-Carbon Coupled Model. Remote Sens. 2021, 13, 3470. https://doi.org/10.3390/rs13173470
Gan G, Zhao X, Fan X, Xie H, Jin W, Zhou H, Cui Y, Liu Y. Estimating the Gross Primary Production and Evapotranspiration of Rice Paddy Fields in the Sub-Tropical Region of China Using a Remotely-Sensed Based Water-Carbon Coupled Model. Remote Sensing. 2021; 13(17):3470. https://doi.org/10.3390/rs13173470
Chicago/Turabian StyleGan, Guojing, Xiaosong Zhao, Xingwang Fan, Henwang Xie, Weirong Jin, Han Zhou, Yifan Cui, and Yuanbo Liu. 2021. "Estimating the Gross Primary Production and Evapotranspiration of Rice Paddy Fields in the Sub-Tropical Region of China Using a Remotely-Sensed Based Water-Carbon Coupled Model" Remote Sensing 13, no. 17: 3470. https://doi.org/10.3390/rs13173470
APA StyleGan, G., Zhao, X., Fan, X., Xie, H., Jin, W., Zhou, H., Cui, Y., & Liu, Y. (2021). Estimating the Gross Primary Production and Evapotranspiration of Rice Paddy Fields in the Sub-Tropical Region of China Using a Remotely-Sensed Based Water-Carbon Coupled Model. Remote Sensing, 13(17), 3470. https://doi.org/10.3390/rs13173470