An Image Registration Method Using Deep Residual Network Features for Multisource High-Resolution Remote Sensing Images
Abstract
:1. Introduction
2. Related Works
2.1. Image Registration
2.2. Deep Residual Network
3. Methodology
3.1. Training of ResNet Model
3.1.1. Sample Set of HR Remote Sensing Images
3.1.2. Transfer Learning and Fine-Tuning
3.2. Image Registration Based on a Combination of SIFT and ResNet Features
3.2.1. Feature Extraction Basedn Image Partitioning Strategy
3.2.2. Feature Fusion and Matching
3.2.3. Image Transformation and Resampling
4. Experiments and Results
4.1. Datasets
4.1.1. Experiment 1: GaoFen Satellite Datasets
4.1.2. Experiment 2: HR Satellite Datasets with Disaster Information
4.2. Evaluation Criteria
4.3. Experimental Results
4.3.1. Experiment 1: GaoFen Multispectral Images
4.3.2. Experiment 2: HR Multispectral Images with Disaster Information
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, K.; Zhang, Y.; Zhang, Z.; Lai, G. A coarse-to-fine registration strategy for multi-sensor images with large resolution differences. Remote Sens. 2019, 11, 470. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Mao, Z.; Shi, W. ICA-ASIFT-based multi-temporal matching of high-resolution remote sensing urban images. Cybern. Inf. Technol. 2016, 16, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Shi, X. A robust point-matching algorithm based on integrated spatial structure constraint for remote sensing image registration. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1716–1720. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, J.; Wu, Y.; Jiao, L.; Zhu, H.; Zhao, W. A novel two-step registration method for remote sensing images based on deep and local features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [Google Scholar] [CrossRef]
- Feng, R.; Shen, H.; BAI, J.; Li, X. Advances and opportunities in remote sensing image geometric registration: A systematic review of state-of-the-art approaches and future research directions. IEEE Geosci. Remote Sens. Mag. 2021, 3, 2–25. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, S.; Jiao, L.; Tian, D.; Wang, S. A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4328–4338. [Google Scholar] [CrossRef]
- Dawn, S.; Saxena, V.; Sharma, B.; Technology, I. Remote sensing image registration techniques: A survey. In Proceedings of the International Conference on Image and Signal Processing, Hong Kong, China, 12–15 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6134, pp. 103–112. [Google Scholar]
- Xiong, J.; Luo, Y.; Tang, G. An improved optical flow method for image registration with large-scale movements. Acta Autom. Sin. 2008, 34, 760–764. [Google Scholar] [CrossRef]
- Tu, Z.; Xie, W.; Zhang, D.; Poppe, R.; Veltkamp, R.C.; Li, B.; Yuan, J. A survey of variational and CNN-based optical flow techniques. Signal Process. Image Commun. 2019, 72, 9–24. [Google Scholar] [CrossRef]
- Moravec, H.P. Towards automatic visual obstacle avoidance. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 22–25 August 1977; pp. 584–590. [Google Scholar]
- Harris, C.G.; Stephens, M.J. A combined corner and edge detector. In Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151. [Google Scholar]
- Shi, J.; Tomasi, C. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Lowe, D.G. Distinctive Image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; TuytelAars, T.; Gool, L.V. Speeded-up robust feature (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhong, S.; Xue, B.; Li, X.; Zhao, L.; Chang, C.I. Iterative scale-invariant feature transform for remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3244–3265. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Schmid, C. Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 2004, 60, 63–86. [Google Scholar]
- Heo, Y.S.; Lee, K.M.; Lee, S.U. Jiont depth map and color consistency estimation for stereo images with different illuminations and cameras. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1094–1106. [Google Scholar]
- Huang, X.; Sun, Y.; Metaxas, D.; Sauer, F.; Xu, C. Hybrid image registration based on configural matching of scale-invariant salient region features. In Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPR), Washington, DC, USA, 27 June–2 July 2004; p. 167. [Google Scholar]
- Hong, G.; Zhang, Y. Combination of feature-based and area-based image registration technique for high resolution remote sensing image. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Barcelona, Spain, 23–28 July 2007; pp. 377–380. [Google Scholar]
- Teke, M. High-resolution multispectral satellite image matching using scale invariant feature transform and speeded up robust features. J. Appl. Remote Sens. 2011, 5, 053553. [Google Scholar] [CrossRef]
- Kupfer, B.; Netanyahu, N.S.; Shimshoni, I. An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 379–383. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y. Fast image matching algorithm based on Harris corner point and SIFT. J. Lanzhou Univ. Technol. 2019, 45, 101–106. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Chandrasekhar, V.; Lin, J.; Morère, O.; Goh, H.; Veillard, A. A practical guide to CNNs and Fisher Vectors for image instance retrieval. Signal Process. 2016, 128, 426–439. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Yang, S.; Li, Y. Retrieval of remote sensing images based on semisupervised deep learning. J. Remote Sens. 2017, 21, 406–414. [Google Scholar]
- Liu, F.; Shen, T.; Ma, X. Convolutional neural network based multi-band ship target recognition with feature fusion. Acta Opt. Sin. 2017, 37, 248–256. [Google Scholar]
- Lee, W.; Sim, D.; Oh, S.J. A CNN-based high-accuracy registration for remote sensing images. Remote Sens. 2021, 13, 1482. [Google Scholar] [CrossRef]
- Han, X.; Leung, T.; Jia, Y.; Sukthankar, R.; Berg, A.C. MatchNet: Unifying feature and metric learning for patch-based matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3279–3286. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Learning to compare image patches via Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 885–894. [Google Scholar]
- Yang, T.Y.; Hsu, J.H.; Lin, Y.Y.; Chuang, Y.Y. Deepcd: Learning deep complementary descriptors for patch representations. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3334–3342. [Google Scholar]
- Dame, A.; Marchand, E. Second-order optimization of mutual information for real-time image registration. IEEE Trans. Image Proc. 2012, 21, 4190–4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischiled, M.A.; Bolles, R.C. Random sample consensus-a paradigm for model-fitting with applications to image-analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Lecture Notes in Computer Science, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer nature: Basingstoke, UK, 2016; Volume 9908, pp. 630–645. [Google Scholar]
- Zhao, X.; Li, H.; Wang, P.; Jing, L. An image registration method for multisource high-resolution remote sensing images for earthquake disaster assessment. Sensors 2020, 20, 2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Quan, D.; Liang, X.; Ning, M.; Guo, Y.; Jiao, L. A deep learning framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 2018, 145, 148–164. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 3320–3328. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105. [Google Scholar]
- Paul, S.; Pati, U.C.; Member, S. Remote sensing optical image registration using modified uniform robust SIFT. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1300–1304. [Google Scholar] [CrossRef]
- Goncalves, H.; Goncalves, J.A.; Corte-Real, L. Measures for an objective evaluation of the geometric correction process quality. IEEE Geosci. Remote Sens. Lett. 2009, 6, 292–296. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Layer Name | Output Size | ResNet-34 | ResNet-50 |
---|---|---|---|
Conv1 | 112 × 112 | 7 × 7, 64, stride 2 | |
Conv2 | 56 × 56 | 3 × 3 max pool, stride 2 | |
Conv3 | 28 × 28 | ||
Conv4 | 14 × 14 | ||
Conv5 | 7 × 7 | ||
Fc | 1 × 1 | Average pool, 1000-d fc, softmax |
No. | Satellite | Resolution (m) | Size (Pixel) | Date |
---|---|---|---|---|
P-A | GF-1 | 8 | 5354 × 5354 | 9 March 2018 |
GE | 8 | 5590 × 5686 | 4 April 2017, 1 May 2017, 6 May 2017, 8 May 2017 | |
P-B | GF-1 | 8 | 5393 × 5388 | 1 March 2018 |
GE | 8 | 5904 × 6206 | 25 November 2014, 28 December 2014, 10 October 2018 |
No. | Satellite | Resolution (m) | Size (Pixel) | Date | Disaster |
---|---|---|---|---|---|
P-C | QuickBird | 2.4 | 2427 × 2569 | 26 December 2008 | Landslides |
GE | 2 | 2932 × 3108 | 23 May 2008 | ||
P-D | GF-1 | 8 | 1218 × 1363 | 23 July 2013 | Landslides, river expansion |
GE | 2 | 6568 × 8644 | 8 February 2010 | ||
P-E | GF-2 | 4 | 2096 × 1789 | 9 August 2017 | Landslides |
GE | 2 | 4632 × 4002 | 5 February 2014 |
Method | Ncp (Pairs) | T (s) | RMSEM (Pixel) | RMSELOO (Pixel) | RMSET (Pixel) | |
---|---|---|---|---|---|---|
P-A | SIFT + ResNet34 | 184 | 41.65 | 0.31 | 0.32 | 0.36 |
SIFT + ResNet50 | 170 | 80.46 | 0.41 | 0.45 | 0.44 | |
Patch-SIFT | 116 | 31.66 | 0.43 | 0.44 | 0.55 | |
SIFT | 80 | 50.77 | 0.33 | 0.34 | 0.66 | |
SURF | 102 | 30.86 | 0.41 | 0.41 | 0.67 | |
P-B | SIFT + ResNet34 | 120 | 96.72 | 0.81 | 0.80 | 0.87 |
SIFT + ResNet50 | 178 | 196.07 | 0.94 | 0.92 | 0.90 | |
Patch-SIFT | 90 | 33.32 | 0.79 | 0.89 | 1.20 | |
SIFT | 22 | 52.54 | 0.57 | 0.43 | 1.12 | |
SURF | 77 | 39.20 | 0.79 | 0.80 | 1.02 |
Method | N (Pairs) | T (s) | RMSEM (Pixel) | RMSELOO (Pixel) | RMSET (Pixel) | |
---|---|---|---|---|---|---|
P-C | SIFT + ResNet34 | 104 | 80.49 | 1.35 | 1.62 | 1.69 |
SIFT + ResNet50 | 137 | 140.95 | 1.22 | 1.53 | 1.79 | |
Patch-SIFT | 45 | 4.81 | 1.94 | 2.11 | 2.01 | |
SIFT | 21 | 36.81 | 0.81 | 1.3 | 9.18 | |
SURF | 12 | 3.10 | 0.84 | 0.80 | 2.43 | |
P-D | SIFT + ResNet34 | 31 | 38.01 | 0.83 | 0.84 | 1.78 |
SIFT + ResNet50 | 55 | 46.84 | 1.21 | 1.21 | 1.87 | |
Patch-SIFT | 9 | 3.35 | 2.59 | 1.37 | 3.11 | |
SIFT | 4 | 5.02 | 2.69 | 1.34 | 5.10 | |
SURF | 4 | 1.35 | – | – | – | |
P-E | SIFT + ResNet34 | 179 | 124.28 | 1.22 | 1.12 | 1.14 |
SIFT + ResNet50 | 163 | 247.41 | 1.10 | 1.11 | 1.25 | |
Patch-SIFT | 94 | 6.57 | 1.27 | 1.32 | 1.88 | |
SIFT | 46 | 35.07 | 0.72 | 1.00 | 2.48 | |
SURF | 52 | 3.75 | 0.98 | 0.99 | 1.70 |
Method | N (Pairs) | T (s) | RMSEM (Pixel) | RMSET (Pixel) | |
---|---|---|---|---|---|
PA | SIFT + ResNet34 | 184 | 41.65 | 0.31 | 0.36 |
SIFT + FC6 | 93 | 129.46 | 0.29 | 0.27 | |
P-B | SIFT + ResNet34 | 120 | 96.72 | 0.81 | 0.87 |
SIFT + FC6 | 170 | 325.64 | 0.86 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, H.; Wang, P.; Jing, L. An Image Registration Method Using Deep Residual Network Features for Multisource High-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 3425. https://doi.org/10.3390/rs13173425
Zhao X, Li H, Wang P, Jing L. An Image Registration Method Using Deep Residual Network Features for Multisource High-Resolution Remote Sensing Images. Remote Sensing. 2021; 13(17):3425. https://doi.org/10.3390/rs13173425
Chicago/Turabian StyleZhao, Xin, Hui Li, Ping Wang, and Linhai Jing. 2021. "An Image Registration Method Using Deep Residual Network Features for Multisource High-Resolution Remote Sensing Images" Remote Sensing 13, no. 17: 3425. https://doi.org/10.3390/rs13173425
APA StyleZhao, X., Li, H., Wang, P., & Jing, L. (2021). An Image Registration Method Using Deep Residual Network Features for Multisource High-Resolution Remote Sensing Images. Remote Sensing, 13(17), 3425. https://doi.org/10.3390/rs13173425