Characterizing Small-Town Development Using Very High Resolution Imagery within Remote Rural Settings of Mozambique
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Image Classification
3.2. Accuracy Assessment
4. Results
4.1. Accuracy Assessment Outcomes
4.2. Change in Village Composition between 2004 and 2012
5. Discussion
5.1. Village Structure as a Proxy for Socio-Economic Standing
5.2. Challenges and Limitations of the Mapping Algorithm
5.3. Technical Innovation and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schneider, A.; Friedl, M.A.; McIver, D.K.; Woodcock, C.E. Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data. Photogramm. Eng. Remote Sens. 2003, 69, 1377–1386. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Jensen, J.R.; Toll, D.L. Detecting residential land-use development at the urban fringe. Photogramm. Eng. Remote Sens. 1982, 48, 629–643. [Google Scholar]
- Li, X.; Yeh, A.G.O. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens. 1998, 19, 1501–1518. [Google Scholar] [CrossRef]
- Ji, C.Y.; Liu, Q.; Sun, D.; Wang, S.; Lin, P.; Li, X. Monitoring urban expansion with remote sensing in China. Int. J. Remote Sens. 2001, 22, 1441–1455. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods. Remote Sens. Environ. 2010, 114, 1676–1686. [Google Scholar] [CrossRef]
- Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 2012, 124, 689–704. [Google Scholar] [CrossRef]
- Rose, A.N.; Bright, E.A. The LandScan Global Population Distribution Project: Current State of the Art and Prospective Innovation. In Proceedings of the Population Association of America Annual Meeting, Boston, MA, USA, 1–3 May 2014. [Google Scholar]
- Brown de Colstoun, E.C.; Huang, C.; Wang, P.; Tilton, J.C.; Tan, B.; Phillips, J.; Niemczura, S.; Ling, P.-Y.; Wolfe, R.E. Global Man-Made Impervious Surface (GMIS) Dataset from Landsat; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C.; Brown de Colstoun, E.C.; Tilton, J.C.; Tan, B. Global Human Built-Up and Settlement Extent (HBASE) Dataset from Landsat; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017. [Google Scholar] [CrossRef]
- Chen, D.; Shevade, V.; Baer, A.; He, J.; Hoffman-Hall, A.; Ying, Q.; Li, Y.; Loboda, T.V. A disease control-oriented land cover land use map for Myanmar. Data 2021, 6, 63. [Google Scholar] [CrossRef]
- Song, G.; Yu, M.; Liu, S.; Zhang, S. A dynamic model for population mapping: A methodology integrating a Monte Carlo simulation with vegetation-adjusted night-time light images. Int. J. Remote Sens. 2015, 36, 4054–4068. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Amaral, S.; Monteiro, A.M.V.; Camara, G.; Quintanilha, J.A. DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. Int. J. Remote Sens. 2006, 27, 855–870. [Google Scholar] [CrossRef]
- Roy Chowdhury, P.K.; Maithani, S.; Dadhwal, V.K. Estimation of urban population in Indo-Gangetic Plains using night-time OLS data. Int. J. Remote Sens. 2012, 33, 2498–2515. [Google Scholar] [CrossRef]
- Yeh, C.; Perez, A.; Driscoll, A.; Azzari, G.; Tang, Z.; Lobell, D.; Ermon, S.; Burke, M. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat. Commun. 2020, 11, 2583. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wan, B.; Guo, Q.; Hu, M.; Zhou, S. Mapping Regional Urban Extent Using NPP-VIIRS DNB and MODIS NDVI Data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Wu, Y.; Zhang, J. Mapping Impervious Surface Distribution with Integration of SNNP VIIRS-DNB and MODIS NDVI Data. Remote Sens. 2015, 7, 12459–12477. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 2016, 9, 1004–1020. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the potential of LJ1-01 nighttime light data for modeling socio-economic parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proville, J.; Zavala-Araiza, D.; Wagner, G. Night-time lights: A global, long term look at links to socio-economic trends. PLoS ONE 2017, 12, e0174610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Moran, E.; Hetrick, S. Detection of impervious surface change with multitemporal Landsat images in an urban–rural frontier. ISPRS J. Photogramm. Remote Sens. 2011, 66, 298–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Gang, C.; Li, X.; Chen, Y.; Li, J. Application of a normalized difference impervious index (NDII) to extract urban impervious surface features based on Landsat TM images. Int. J. Remote Sens. 2015, 36, 1055–1069. [Google Scholar] [CrossRef]
- Bhang, K.J.; Park, S. Evaluation of the surface temperature variation with surface settings on the urban heat island in Seoul, Korea, using Landsat-7 ETM+ and SPOT. IEEE Geosci. Remote Sens. Lett. 2009, 6, 708–712. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Fan, J.; Ma, T.; Zhou, C.; Zhou, Y.; Xu, T. Comparative estimation of urban development in China’s cities using socioeconomic and DMSP/OLS night light data. Remote Sens. 2014, 6, 7840–7856. [Google Scholar] [CrossRef] [Green Version]
- Hoffman-Hall, A.; Loboda, T.V.; Hall, J.V.; Carroll, M.L.; Chen, D. Mapping remote rural settlements at 30 m spatial resolution using geospatial data-fusion. Remote Sens. Environ. 2019, 233, 111386. [Google Scholar] [CrossRef]
- United Nations. New Urban Agenda; United Nations Conference on Housing and Sustainable Urban Development (Habitat III): Quito, Ecuador, 2016. [Google Scholar]
- Tusting, L.S.; Bisanzio, D.; Alabaster, G.; Cameron, E.; Cibulskis, R.; Davies, M.; Flaxman, S.; Gibson, H.S.; Knudsen, J.; Mbogo, C.; et al. Mapping changes in housing in sub-Saharan Africa from 2000 to 2015. Nature 2019, 568, 391–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, S.W.; Jawara, M.; Mwesigwa, J.; Achan, J.; Bayoh, N.; Bradley, J.; Kandeh, B.; Kirby, M.J.; Knudsen, J.; Macdonald, M.; et al. Reduced mosquito survival in metal-roof houses may contribute to a decline in malaria transmission in sub-Saharan Africa. Sci. Rep. 2019, 9, 7770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, M.I. Livestock in africa: The economics of ownership and production, and the potential for improvement. Agric. Hum. Values 1995, 12, 4–18. [Google Scholar] [CrossRef]
- Jensen, J.R.; Cowen, D.C. Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogramm. Eng. Remote Sens. 1999, 65, 611–622. [Google Scholar]
- Gamba, P.; Dell’Acqua, F.; Stasolla, M.; Trianni, G.; Lisini, G. Limits and challenges of optical very-high-spatial-resolution satellite remote sensing for urban applications. In Urban Remote Sensing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 35–48. [Google Scholar]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Smits, P.C.; Annoni, A. Updating land-cover maps by using texture information from very high-resolution space-borne imagery. IEEE Trans. Geosci. Remote Sensing 1999, 37, 1244–1254. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S.; Wang, Q.; Emery, W.J. Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogramm. Remote Sens. 2017, 132, 48–60. [Google Scholar] [CrossRef]
- Mahabir, R.; Croitoru, A.; Crooks, A.T.; Agouris, P.; Stefanidis, A. A critical review of high and very high-resolution remote sensing approaches for detecting and mapping slums: Trends, challenges and emerging opportunities. Urban Sci. 2018, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Kettig, R.L.; Landgrebe, D.A. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Trans. Geosci. Electron. 1976, 14, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Lang, S. Object-based image analysis for remote sensing applications: Modeling reality—dealing with complexity. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–27. [Google Scholar]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Chunyang, H.; Jing, L.; JinShui, Z.; Yaozhong, P.; YunHao, C. Dynamic monitor on urban expansion based on a object-oriented approach. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ‘05, Seoul, Korea, 29 July 2005; pp. 2850–2853. [Google Scholar]
- Mundia, C.N.; Aniya, M. Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS. Int. J. Remote Sens. 2005, 26, 2831–2849. [Google Scholar] [CrossRef]
- Silva, J.A.; Loboda, T.; Strong, M. Examining aspiration’s imprint on the landscape: Lessons from Mozambique’s Limpopo National Park. Glob. Environ. Chang. 2018, 51, 43–53. [Google Scholar] [CrossRef]
- Peace Parks Foundation. Great Limpopo. Available online: https://www.peaceparks.org/tfcas/great-limpopo/ (accessed on 21 July 2021).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band Worldview-2 satellite data. Remote Sens. 2012, 4, 2661. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.6; Environmental Systems Research Institute: Redlands, CA, USA, 2017. [Google Scholar]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data—or tears: An application to educational enrollments in states of India. Demography 2001, 38, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Sahn, D.E.; Stifel, D. Exploring alternative measures of welfare in the absence of expenditure data. Rev. Income Wealth 2003, 49, 463–489. [Google Scholar] [CrossRef]
- Sathyakumar, V.; Ramsankaran, R.; Bardhan, R. Linking remotely sensed Urban Green Space (UGS) distribution patterns and Socio-Economic Status (SES)—A multi-scale probabilistic analysis based in Mumbai, India. GISci. Remote Sens. 2019, 56, 645–669. [Google Scholar] [CrossRef]
- Niebergall, S.; Loew, A.; Mauser, W. Integrative Assessment of Informal Settlements Using VHR Remote Sensing Data—The Delhi Case Study. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2008, 1, 193–205. [Google Scholar] [CrossRef]
- Warth, G.; Braun, A.; Assmann, O.; Fleckenstein, K.; Hochschild, V. Prediction of socio-economic indicators for urban planning using VHR satellite imagery and spatial analysis. Remote Sens. 2020, 12, 1730. [Google Scholar] [CrossRef]
- Ok, A.O. Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts. ISPRS J. Photogramm. Remote Sens. 2013, 86, 21–40. [Google Scholar] [CrossRef]
- Gao, X.; Wang, M.; Yang, Y.; Li, G. Building extraction from RGB VHR images using Shifted Shadow algorithm. IEEE Access 2018, 6, 22034–22045. [Google Scholar] [CrossRef]
- Ngo, T.; Collet, C.; Mazet, V. Automatic rectangular building detection from VHR aerial imagery using shadow and image segmentation. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 1483–1487. [Google Scholar]
- Kadhim, N.; Mourshed, M. A shadow-overlapping algorithm for estimating building heights from VHR satellite images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Matasci, G.; Longbotham, N.; Pacifici, F.; Kanevski, M.; Tuia, D. Understanding angular effects in VHR imagery and their significance for urban land-cover model portability: A study of two multi-angle in-track image sequences. ISPRS J. Photogramm. Remote Sens. 2015, 107, 99–111. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.; Vosselman, G. Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sens. 2016, 8, 689. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cao, Y.; Yang, C.; Zhou, Y.; Ai, M. Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: Multifeatured geospatial data to support rural landscape investigation, documentation and management. J. Cult. Herit. 2020, 44, 185–195. [Google Scholar] [CrossRef]
- Sonnemann, T.F.; Malatesta, E.H.; Hofman, C.L. Applying UAS Photogrammetry to Analyze Spatial Patterns of Indigenous Settlement Sites in the Northern Dominican Republic. In Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing; Forte, M., Campana, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 71–87. [Google Scholar]
- Stöcker, C.; Ho, S.; Nkerabigwi, P.; Schmidt, C.; Koeva, M.; Bennett, R.; Zevenbergen, J. Unmanned Aerial System imagery, land data and user needs: A socio-technical assessment in Rwanda. Remote Sens. 2019, 11, 1035. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Jung, J.; Maeda, M.M.; Landivar, J. Crop height monitoring with digital imagery from Unmanned Aerial System (UAS). Comput. Electron. Agric. 2017, 141, 232–237. [Google Scholar] [CrossRef]
- Chaidas, K.; Tataris, G.; Soulakellis, N. Post-earthquake 3d building model (LOD2) generation from UAS imagery: The case of Vrisa Traditional Settlement, Lesvos, Greece. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 44, 165–172. [Google Scholar] [CrossRef]
- Partovi, T.; Fraundorfer, F.; Bahmanyar, R.; Huang, H.; Reinartz, P. Automatic 3-D building model reconstruction from Very High Resolution stereo satellite imagery. Remote Sens. 2019, 11, 1660. [Google Scholar] [CrossRef] [Green Version]
Acquisition Date | Satellite Platform | Spatial Resolution | Number of Bands | Sun Elevation | Sun Azimuth | Satellite Elevation | Satellite Azimuth |
---|---|---|---|---|---|---|---|
22 February 2004 | QuickBird | 2.4 m | 4 | 55.8° | 72.9° | 74.9° | 57.6° |
11 August 2012 | WorldView-2 | 1 m | 8 | 43.8° | 35.4° | 62.9° | 108.7° |
Shadow | Metal Roofs | Grass | Corrals | Bare Ground | Tree Crowns | Total | |
---|---|---|---|---|---|---|---|
2004 | 178 | 65 | 230 | 171 | 213 | 124 | 981 |
2012 | 125 | 63 | 0 | 86 | 437 | 137 | 848 |
Input (Spectra-Based Classes) | Rules | Output (Object-Based Classes) |
---|---|---|
Metal Roofs | Direct assignment | Metal Roofs |
Corrals | Object area < 50 m2 | Other |
Object area ≥ 50 m2 | Corrals | |
Shadow | Object adjacent to grass or bare ground | Thatch Roofs |
Object adjacent to Metal Roofs | Metal Roofs | |
Object adjacent to a tree crown displaced in the direction opposite to solar azimuth angle | Other | |
Other shadow objects | Thatch Roofs | |
Grass | Direct assignment | Other |
Tree Crowns | Direct assignment | Other |
Bare Ground | Direct assignment | Other |
Ground Truth | User’s Accuracy | ||||||
---|---|---|---|---|---|---|---|
Metal | Thatch | Corral | Other | Total | |||
Mapped | Metal | 47 | 3 | 0 | 0 | 50 | 94% |
Thatch | 1 | 29 | 0 | 20 | 50 | 58% | |
Corral | 0 | 0 | 46 | 4 | 50 | 92% | |
Other | 0 | 1 | 0 | 49 | 50 | 98% | |
Total | 48 | 33 | 46 | 73 | 200 | ||
Producer’s Accuracy | 98% | 88% | 100% | 67% | |||
Overall Accuracy: 86% |
Ground Truth | User’s Accuracy | ||||||
---|---|---|---|---|---|---|---|
Metal | Thatch | Corral | Other | Total | |||
Mapped | Metal | 50 | 0 | 0 | 0 | 50 | 100% |
Thatch | 0 | 44 | 0 | 6 | 50 | 88% | |
Corral | 0 | 0 | 47 | 3 | 50 | 94% | |
Other | 0 | 3 | 0 | 47 | 50 | 94% | |
Total | 50 | 47 | 47 | 56 | 200 | ||
Producer’s Accuracy | 100% | 94% | 100% | 84% | |||
Overall Accuracy: 94% |
Village 1 | |||||||
---|---|---|---|---|---|---|---|
Area (ha) | Metal (count) | Thatch (count) | Total (count) | % Metal of Total | Total Density (count/ha) | Corral (ha) | |
2004 | 57 | 133 | 588 | 721 | 18.4% | 12.65 | 0.49 |
2012 | 65 | 289 | 511 | 800 | 36.1% | 12.31 | 0.75 |
% Change | 14.0% | 117.3% | −13.1% | 11.0% | N/A | −2.7% | 51.9% |
Village 2 | |||||||
Area (ha) | Metal (count) | Thatch (count) | Total (count) | % Metal of Total | Total Density (count/ha) | Corral (ha) | |
2004 | 24 | 39 | 243 | 282 | 13.8% | 11.75 | 0.11 |
2012 | 40 | 97 | 151 | 248 | 39.1% | 6.20 | 0.16 |
% Change | 66.7% | 148.7% | −37.9% | −12.1% | N/A | −47.2% | 41.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Loboda, T.V.; Silva, J.A.; Tonellato, M.R. Characterizing Small-Town Development Using Very High Resolution Imagery within Remote Rural Settings of Mozambique. Remote Sens. 2021, 13, 3385. https://doi.org/10.3390/rs13173385
Chen D, Loboda TV, Silva JA, Tonellato MR. Characterizing Small-Town Development Using Very High Resolution Imagery within Remote Rural Settings of Mozambique. Remote Sensing. 2021; 13(17):3385. https://doi.org/10.3390/rs13173385
Chicago/Turabian StyleChen, Dong, Tatiana V. Loboda, Julie A. Silva, and Maria R. Tonellato. 2021. "Characterizing Small-Town Development Using Very High Resolution Imagery within Remote Rural Settings of Mozambique" Remote Sensing 13, no. 17: 3385. https://doi.org/10.3390/rs13173385
APA StyleChen, D., Loboda, T. V., Silva, J. A., & Tonellato, M. R. (2021). Characterizing Small-Town Development Using Very High Resolution Imagery within Remote Rural Settings of Mozambique. Remote Sensing, 13(17), 3385. https://doi.org/10.3390/rs13173385