Using Sentinel-2 for Simplifying Soil Sampling and Mapping: Two Case Studies in Umbria, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Identification of the Sampling Locations
2.3. Soil Sampling
2.4. Linear Regression Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flanders, D.; Hall-Beyer, M.; Pereverzoff, J. Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction. Can. J. Remote Sens. 2003, 29, 441–452. [Google Scholar] [CrossRef]
- Kerry, R.; Oliver, M.A.; Frogbrook, Z.L. Geostatistical Applications for Precision Agriculture; Springer: Dordrecht, The Netherlands, 2010; pp. 35–63. [Google Scholar] [CrossRef]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sens. 2020, 12, 3424. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Lorenz, F.; Fröhlich, P.; Liebisch, F. Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping. Remote Sens. 2020, 12, 1116. [Google Scholar] [CrossRef] [Green Version]
- Clay, D.E.; Carlson, C.G. Precision Soil Sampling. In iGrow Corn: Best Management Practices; Clay, D.E., Carlson, C.G., Clay, S.A., Byamukama, E., Eds.; South Dakota State University: Brookings, SD, USA, 2016. [Google Scholar]
- Wollenhaupt, N.C.; Wolkowski, R.P. Grid Soil Sampling. Better Crop. 1994, 78, 6–8. [Google Scholar]
- Corwin, D.L.; Lesch, S.M.; Oster, J.D.; Kaffka, S.R. Monitoring management-induced spatio-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma 2006, 131, 369–387. [Google Scholar] [CrossRef]
- Messina, G.; Praticò, S.; Badagliacca, G.; Di Fazio, S.; Monti, M.; Modica, G. Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. Drones 2021, 5, 61. [Google Scholar] [CrossRef]
- Oza, S.R.; Panigrahy, S.; Parihar, J.S. Concurrent use of active and passive microwave remote sensing data for monitoring of rice crop. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 296–304. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef] [Green Version]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A Processor for Users, Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; European Space Agency: Paris, France, 2016; pp. 1–8. [Google Scholar]
- Santaga, F.S.; Benincasa, P.; Toscano, P.; Antognelli, S.; Ranieri, E.; Vizzari, M. Simplified and Advanced Sentinel-2-Based Precision Nitrogen Management of Wheat. Agronomy 2021, 11, 1156. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties 94. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote Sensing of Soil Properties in Precision Agriculture: A Review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Ahmed, Z.; Iqbal, J. Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS. Eur. J. Remote Sens. 2014, 47, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Nanni, M.R.; Demattê, J.A.M. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Sci. Soc. Am. J. 2006, 70, 393. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Daniel, Ž.; Saberioon, M. Remote Sensing of Environment Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Daniel, K.W.; Tripathi, N.K.; Honda, K.; Apisit, E. Analysis of vnir (400–1100nm) spectral signatures for estimation of soil organic matter in tropical soils of thailand. Int. J. Remote Sens. 2004, 25, 83–91. [Google Scholar] [CrossRef]
- Hummel, J.W.; Sudduth, K.A.; Hollinger, S.E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput. Electron. Agric. 2001, 32, 149–165. [Google Scholar] [CrossRef]
- Masserschmidt, I.; Cuelbas, C.J.; Poppi, R.J.; De Andrade, J.C.; De Abreu, C.A.; Davanzo, C.U. Determination of organic matter in soils by FTIR/diffuse reflectance and multivariate calibration. J. Chemom. 1999, 13, 265–273. [Google Scholar] [CrossRef]
- McCarty, G.W.; Reeves, J.B. Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Sci. 2006, 171, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Orueta, A.; Ustin, S.L. Remote sensing of soil properties in the Santa Monica Mountains I. Spectral analysis. Remote Sens. Environ. 1998, 65, 170–183. [Google Scholar] [CrossRef]
- Shibusawa, S.; Anom, S.W.; Sato, S.; Sasao, A.; Hirako, S. Soil mapping using the realtime soil spectrophotometer. Precis. Agric. 2001, 1, 497–508. [Google Scholar]
- Stamatiadis, S.; Christofides, C.; Tsadilas, C.; Samaras, V.; Schepers, J.S.; Francis, D. Ground-sensor soil reflectance as related to soil properties and crop response in a cotton field. Precis. Agric. 2005, 6, 399–411. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.M.; Baker, M.G. Multispectral data for mapping soil texture: Possibilities and limitations. Appl. Eng. Agric. 2000, 16, 731–741. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Qi, Q.; Liu, Y.; Wang, J. Remote Sensing-Guided Sampling Design with Both Good Spatial Coverage and Feature Space Coverage for Accurate Farm Field-Level Soil Mapping. Remote Sens. 2019, 11, 1946. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; Wesemael, B. van Sampling Strategies for Soil Property Mapping Using Multispectral Sentinel-2 and Hyperspectral EnMAP Satellite Data. Remote Sens. 2019, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2013, 1, 2321–7782. [Google Scholar]
- Purnima, B.; Arvind, K. EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Liu, F.; Deng, Y. Determine the number of unknown targets in Open World based on Elbow method. IEEE Trans. Fuzzy Syst. 2020, 6706, 1. [Google Scholar] [CrossRef]
- Day, P.R. Particle Fractionation and Particle-Size Analysis. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 545–567. ISBN 9780891182030. [Google Scholar]
- Soltner, D. Le Bases de la Production Vegetale, 16th ed.; Tecniques, Collection Sciences et Agricoles: Angers, France, 1988. [Google Scholar]
- United States Department of Agriculture; Natural Resources Conservation Service. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; US Department of Agriculture: Washington, DC, USA, 1975.
- RC Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Volume 2, pp. 1–12. ISBN 3-900051-070. [Google Scholar]
- De Mendiburu, F. Statistical Procedures for Agricultural Research. Package ‘Agricolae’; Comprehensive R Archive Network; Institute for Statistics and Mathematics: Vienna, Austria, 2013; Available online: http://cran.r-project.org/web/packages/agricolae/agricolae.pdf (accessed on 23 August 2017).
- Hartig, F. Package ‘DHARMa’. 2018. Available online: http://florianhartig.github.io/DHARMa/ (accessed on 10 July 2017).
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. 2001, 63. [Google Scholar] [CrossRef]
- Tassi, A.; Vizzari, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Blaschke, T.; Lang, S.; Lorup, E.; Strobl, J.; Zeil, P. Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications. Environ. Inf. Plan. Politics Public 2000, 2, 555–570. [Google Scholar]
Soil Property | Satellite | Spectral Region, Index or Regression Formula | Spectral Range (nm) | R2 | Pearson Index | Reference |
---|---|---|---|---|---|---|
OM | Landsat TM | 2.24 − 0.021 × (TM1) − 0.0165 × (TM6) + 0.0087 × (TM7) | 0.54 | [16] | ||
TM1 | 450–520 | −0.701 | ||||
TM6 | 10,400–12,500 | −0.494 | ||||
TM7 | 2080–2350 | −0.500 | ||||
7.084 − 0.109 (TM7) − 0.102 (TM2) | 0.51 | [17] | ||||
Sentinel 2 | BI = √((red × red) + (green × green))/2 | [18] | ||||
BI2 = √((red × red) + (green × green) + (nir × nir))/3 | ||||||
GNDVI = (NIR-green)/(NIR + green) | ||||||
B4 (red) | 665 | |||||
B5 (red-edge) | 705 | |||||
SATVI = ((B11- B4)/(B11 + B4 + 0.5)) × (1 + 0.5)-B12/2 | ||||||
B11 | 1565–1655 | |||||
B12 | 2100–2280 | |||||
SPOT (Satellite Probatoire d’Observation de la Terre) | VIS–NIR | 400–1190 | 0.59 | [19] | ||
NIR | 1603–2598 | 0.79 | [20] | |||
MIR | 2500–25,000 | 0.98 | [21] | |||
NIR | 1000–2500 | 0.92 | [22] | |||
UV–VIS–NIR | 200–2500 | 0.53 | [23] | |||
VIS–NIR | 400–2400 | 0.65 | [24] | |||
VIS | 400–680 | 0.68 | [25] | |||
MSAVI2 = (2 × nir+1-√((2 × nir+1)2 − 8 × (nir-red)))/2 | [26] | |||||
CLAY | Landsat TM | TM4 (nir) | 760–900 | 0.709 | [16] | |
−5.24 + 1.35 × (TM4) − 0.32 × (TM6) | 0.51 | |||||
TM3 (red) | 630–690 | −0.473 | [27] | |||
TM4 (nir) | 760–900 | −0.494 | ||||
TM5 | 1550–1750 | −0.524 | ||||
TM7 | 2080–2350 | −0.568 | ||||
27.03 − 1.260(TM1) + 0.363(TM3) − 0.301(TM4) + 0.305(TM5) − 0.848 (TM7) | 0.67 | [17] | ||||
Sentinel 2 | MSAVI | [18] | ||||
MSAVI2 = (2 × nir + 1 − √((2 × nir + 1)2 − 8 × (nir-red)))/2 | ||||||
SAVI= ((1 + L) × (nir − red))/(nir + red + L) L = 0.5 | ||||||
B7 (nir) | 783 | |||||
V = nir/red | ||||||
SAND | Landsat TM | TM3 (red) | 630–690 | 0.462 | [27] | |
TM4 (nir) | 760–900 | 0.493 | ||||
TM5 | 1550–1750 | 0.526 | ||||
TM7 | 2080–2350 | 0.572 | ||||
13.54 + 0.934(TM1) − 0.228(TM5) + 0.663(TM7) | 0.52 | [17] | ||||
SILT | Landsat TM | B4 (nir) | 760–900 | 0.714 | [16] | |
86.78 +1.26 × (TM4) − 1.91 × (TM6) | 0.72 | |||||
TM6 | 10,400–12,500 | −0.571 | ||||
TM3 (red) | 630–690 | −0.426 | [27] | |||
TM4 (nir) | 760–900 | −0.466 | ||||
TM5 | 1550–1750 | −0.502 | ||||
TM7 | 2080–2350 | −0.547 |
Field | PC | Cumulative Variance | B02 | B04 | B08 | B11 | B12 |
---|---|---|---|---|---|---|---|
1 | 1 | 99.47 | 5% | 37% | 14% | 35% | 9% |
2 | 99.93 | 11% | 16% | 20% | 1% | 52% | |
3 | 99.94 | 14% | 18% | 5% | 42% | 20% | |
4 | 99.98 | 31% | 4% | 47% | 7% | 10% | |
5 | 100 | 39% | 25% | 14% | 14% | 9% | |
2 | 1 | 98.93 | 6% | 26% | 1% | 27% | 41% |
2 | 99.72 | 17% | 40% | 2% | 0% | 41% | |
3 | 99.9 | 22% | 7% | 51% | 14% | 5% | |
4 | 99.94 | 31% | 27% | 3% | 33% | 6% | |
5 | 100 | 24% | 0% | 43% | 26% | 7% |
Field | PC | Cumulative Variance | B3 | B12 |
---|---|---|---|---|
1 | 1 | 99.45 | 16% | 84% |
2 | 100 | 84% | 16% | |
2 | 1 | 99.43 | 31% | 69% |
2 | 100 | 69% | 31% |
Attributes and Field | Sampling Scheme | Linear Regression Equation | R2 | p-Value | Residuals Standard Error | Residuals |
---|---|---|---|---|---|---|
Clay Field 1 | RS6 | 69.059722 + 0.006234 × clay_PC1 | 0.88 | <0.01 | 1.927 | −0.597; 1.672; −1.183; −1.494; −1.040; 2.642. |
RS3 | 79.033123 + 0.007860 × clay_PC1 | 0.99 | <0.01 | 0.077 | 0.026; −0.063; −0.037. | |
Clay Field 2 | RS6 | 61.553787 + 0.012154 × clay_PC1 | 0.67 | <0.05 | 2.719 | −0.338; 1.074; −1.505; −0.396; 4.132; −2.967. |
RS3 | 62.591025 + 0.012745 × clay_PC1 | 0.96 | 0.13 | 1.197 | 0.396; −0.972; 0.576. | |
OM Field 1 | RS6 | 2.287063 − 0.000165 × om_PC1 | 0.74 | < 0.05 | 0.055 | 0.049; −0.055; −0.051; 0.063; −0.017; 0.011. |
RS3 | 2.783529 − 0.000292 × om_PC1 | 0.96 | 0.13 | 0.050 | 0.017; −0.041; 0.024. | |
OM Field 2 | RS6 | 1.806841 − 0.000332 × om_PC1 | 0.49 | 0.12 | 0.063 | 0.008; −0.042; 0.015; 0.072; −0.087; 0.034. |
RS3 | 1.504280 − 0.000148 × om_PC1 | 0.47 | 0.52 | 0.041 | −0.014; 0.034; −0.019. |
Attributes | Field | Linear Regression Equation | R2 * | Residuals Skewness | Residuals Moran’s I Test (p-Value) ** |
---|---|---|---|---|---|
Clay | 1 | 80.02 + 0.00807 × clay_PC1 | 0.85 | 0.01 | <0.05 |
2 | 52.693993 + 0.009253 × clay_PC1 | 0.36 | −0.51 | >0.05 | |
OM | 1 | 3.267 − 0.0003844 × om_PC1 | 0.65 | 0.01 | >0.05 |
2 | 2.278136 − 0.000554 × om_PC1 | 0.40 | 0.20 | >0.05 |
Field 1 | Field 2 | |||||||
---|---|---|---|---|---|---|---|---|
Clay | Organic Matter | Clay | Organic Matter | |||||
6 samples | 3 samples | 6 samples | 3 samples | 6 samples | 3 samples | 6 samples | 3 samples | |
Normalized average error | 1.95 | 1.70 | 0.19 | 0.16 | 2.65 | 2.72 | 0.14 | 0.17 |
st.dev | 2.390 | 2.046 | 0.150 | 0.116 | 3.314 | 3.374 | 0.092 | 0.107 |
average | −0.05 | 0.11 | −0.15 | −0.14 | 1.09 | 0.51 | −0.14 | −0.16 |
min | −6.03 | −4.94 | −0.54 | −0.41 | −4.42 | −5.44 | −0.40 | −0.46 |
max | 4.15 | 5.27 | 0.20 | 0.17 | 9.46 | 8.96 | 0.11 | 0.14 |
RMSE | 2.66 | 2.35 | 0.23 | 0.19 | 3.70 | 3.67 | 0.18 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santaga, F.S.; Agnelli, A.; Leccese, A.; Vizzari, M. Using Sentinel-2 for Simplifying Soil Sampling and Mapping: Two Case Studies in Umbria, Italy. Remote Sens. 2021, 13, 3379. https://doi.org/10.3390/rs13173379
Santaga FS, Agnelli A, Leccese A, Vizzari M. Using Sentinel-2 for Simplifying Soil Sampling and Mapping: Two Case Studies in Umbria, Italy. Remote Sensing. 2021; 13(17):3379. https://doi.org/10.3390/rs13173379
Chicago/Turabian StyleSantaga, Francesco Saverio, Alberto Agnelli, Angelo Leccese, and Marco Vizzari. 2021. "Using Sentinel-2 for Simplifying Soil Sampling and Mapping: Two Case Studies in Umbria, Italy" Remote Sensing 13, no. 17: 3379. https://doi.org/10.3390/rs13173379
APA StyleSantaga, F. S., Agnelli, A., Leccese, A., & Vizzari, M. (2021). Using Sentinel-2 for Simplifying Soil Sampling and Mapping: Two Case Studies in Umbria, Italy. Remote Sensing, 13(17), 3379. https://doi.org/10.3390/rs13173379