Kuck, T.N.; Sano, E.E.; Bispo, P.d.C.; Shiguemori, E.H.; Silva Filho, P.F.F.; Matricardi, E.A.T.
A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images. Remote Sens. 2021, 13, 3341.
https://doi.org/10.3390/rs13173341
AMA Style
Kuck TN, Sano EE, Bispo PdC, Shiguemori EH, Silva Filho PFF, Matricardi EAT.
A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images. Remote Sensing. 2021; 13(17):3341.
https://doi.org/10.3390/rs13173341
Chicago/Turabian Style
Kuck, Tahisa Neitzel, Edson Eyji Sano, Polyanna da Conceição Bispo, Elcio Hideiti Shiguemori, Paulo Fernando Ferreira Silva Filho, and Eraldo Aparecido Trondoli Matricardi.
2021. "A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images" Remote Sensing 13, no. 17: 3341.
https://doi.org/10.3390/rs13173341
APA Style
Kuck, T. N., Sano, E. E., Bispo, P. d. C., Shiguemori, E. H., Silva Filho, P. F. F., & Matricardi, E. A. T.
(2021). A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images. Remote Sensing, 13(17), 3341.
https://doi.org/10.3390/rs13173341