Evaluating the Potential of GloFAS-ERA5 River Discharge Reanalysis Data for Calibrating the SWAT Model in the Grande San Miguel River Basin (El Salvador)
Abstract
:1. Introduction
2. Study Area and Weather Data Sources
2.1. Study Area
2.2. In Situ Rainfall and Temperature Data
2.3. Reanalysis Precipitation and Temperature Datasets Used in This Study
2.3.1. ERA5 Reanalysis Dataset
2.3.2. CHIRPS and CHIRTS
- the Tropical Rainfall Measuring Mission (TRMM) 3B42 product from NASA
- the monthly precipitation climatology (CHPClim)
- atmospheric model rainfall fields from the National Oceanic and Atmospheric Administration (NOAA) Climate Forecast System version 2 (CFSv2)
- quasi-global geostationary thermal infrared (IR) satellite observations from two NOAA sources
- in situ rainfall observations
2.3.3. CFSR
2.4. GloFAS River Discharge Reanalysis Dataset
3. Materials and Methods
3.1. SWAT Model Description
3.2. SWAT Model Setup
3.3. SWAT Model Calibration
3.4. Performance Evaluation of the Reanalysis Datasets and Simulated Streamflow
4. Results and Discussion
4.1. Comparison between Observed and Reanalysis Datasets
4.2. Model Performance before Calibration
4.3. Model Calibration Using GLoFAS Discharge Data
4.4. Evaluation of the Simulated Monthly Streamflows for Various Scenarios
4.5. Limitations and Future Research Directions
5. Conclusions
- (1)
- The statistical indicators (CC, RMSE, ME, and BIAS) allowed the accuracy of the reanalysis data to be quantitatively evaluated. We found that CHIRPS performed best in reproducing the observed precipitation, despite consistently overestimating the rainfall.
- (2)
- In terms of rain detection ability, CHIRPS (CSI ranging from 0.52 to 0.63) displayed the greatest daily accuracy in detecting the precipitation occurrences. The next best were ERA5 and then CFSR. However, all three reanalysis datasets showed acceptable rainfall detection capability.
- (3)
- Among the three temperature reanalysis products, the performance of CHIRTS was the least accurate; it repeatedly overestimated mean temperature by 2–3 °C. By contrast, ERA5 and CFSR presented excellent agreement with the observed data.
- (4)
- Models that were calibrated using GloFAS data as the observed data, independently of the precipitation and temperature data (ERA5, CHIRPS-CHIRTS and CFSR) showed acceptable model performance. This point was evident in the KGE values, which ranged from 0.74 to 0.79, and the R2 values of between 0.57 and 0.78.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kiros, G.; Shetty, A.; Nandagiri, L. Performance evaluation of SWAT model for land use and land cover changes under different climatic conditions: A review. J. Waste Water Treat. Anal. 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Krysanova, V.; Srinivasan, R. Assessment of climate and land use change impacts with SWAT. Reg. Environ. Chang. 2014, 15, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Kok, K.; Winograd, M. Modelling land-use change for Central America, with special reference to the impact of hurricane mitch. Ecol. Model. 2002, 149, 53–69. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Amador, J.A.; Alfaro, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94–112. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of variable-infiltration capacity model and modis-terra satellite-derived grid-scale evapotranspiration estimates in a river basin with tropical monsoon-type climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Deb, P.; Kumari, N. Multi-Model approach to assess the dynamics of hydrologic components in a tropical ecosystem. Water Resour. Manag. 2020, 34, 327–341. [Google Scholar] [CrossRef]
- Paul, P.K.; Kumari, N.; Panigrahi, N.; Mishra, A.; Singh, R. Implementation of cell-to-cell routing scheme in a large scale conceptual hydrological model. Environ. Model. Softw. 2018, 101, 23–33. [Google Scholar] [CrossRef]
- Fukunaga, D.C.; Cecílio, R.; Zanetti, S.S.; Oliveira, L.T.; Caiado, M.A.C. Application of the SWAT hydrologic model to a tropical watershed at Brazil. Catena 2015, 125, 206–213. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud. 2020, 31, 100730. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Yang, H.; Srinivasan, R. Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Tan, M.L.; Yang, X. Effect of rainfall station density, distribution and missing values on SWAT outputs in tropical region. J. Hydrol. 2020, 584, 124660. [Google Scholar] [CrossRef]
- Dhanesh, Y.; Bindhu, V.; Senent-Aparicio, J.; Brighenti, T.; Ayana, E.; Smitha, P.; Fei, C.; Srinivasan, R. A comparative evaluation of the performance of CHIRPS and CFSR data for different climate zones using the SWAT model. Remote Sens. 2020, 12, 3088. [Google Scholar] [CrossRef]
- Mazzoleni, M.; Brandimarte, L.; Amaranto, A. Evaluating precipitation datasets for large-scale distributed hydrological modelling. J. Hydrol. 2019, 578, 124076. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Guo, S.; Gu, L.; Zeng, Z.; Liu, D.; Chen, J.; Shen, Y.; Xu, C.-Y. Blending multi-satellite, atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling. J. Hydrol. 2021, 593, 125878. [Google Scholar] [CrossRef]
- Usman, M.; Ndehedehe, C.E.; Ahmad, B.; Manzanas, R.; Adeyeri, O.E. Modeling streamflow using multiple precipitation products in a topographically complex catchment. Model. Earth Syst. Environ. 2021, 1–11. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Cracknell, A.P. Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water 2017, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. Aphrodite: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Yang, L.; Mekonnen, D.F. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Senent-Aparicio, J.; Jimeno-Sáez, P.; López-Ballesteros, A.; Giménez, J.G.; Pérez-Sánchez, J.; Cecilia, J.M.; Srinivasan, R. Impacts of SWAT weather generator statistics from high-resolution datasets on monthly streamflow simulation over Peninsular Spain. J. Hydrol. Reg. Stud. 2021, 35, 100826. [Google Scholar] [CrossRef]
- Verdin, A.; Funk, C.; Peterson, P.; Landsfeld, M.; Tuholske, C.; Grace, K. Development and validation of the chirts-daily quasi-global high-resolution daily temperature data set. Sci. Data 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Kolluru, V.; Kolluru, S.; Konkathi, P. Evaluation and integration of reanalysis rainfall products under contrasting climatic conditions in India. Atmos. Res. 2020, 246, 105121. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation 45dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Revilla-Romero, B.; Beck, H.E.; Burek, P.; Salamon, P.; de Roo, A.; Thielen, J. Filling the gaps: Calibrating a rainfall-runoff model using satellite-derived surface water extent. Remote Sens. Environ. 2015, 171, 118–131. [Google Scholar] [CrossRef]
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Ghiggi, G.; Humphrey, V.; Seneviratne, S.I.; Gudmundsson, L. G-RUN ensemble: A multi-forcing observation-based global runoff reanalysis. Water Resour. Res. 2021, 57. [Google Scholar] [CrossRef]
- He, X.; Pan, M.; Wei, Z.; Wood, E.F.; Sheffield, J. A global drought and flood catalogue from 1950 to 2016. Bull. Am. Meteorol. Soc. 2020, 101, E508–E535. [Google Scholar] [CrossRef] [Green Version]
- Balsamo, G.; Pappenberger, F.; Dutra, E.; Viterbo, P.; Hurk, B.V.D. A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrol. Process. 2011, 25, 1046–1054. [Google Scholar] [CrossRef]
- van der Knijff, J.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 2010, 24, 189–212. [Google Scholar] [CrossRef]
- Alfieri, L.; Lorini, V.; Hirpa, F.A.; Harrigan, S.; Zsoter, E.; Prudhomme, C.; Salamon, P. A global streamflow reanalysis for 1980–2018. J. Hydrol. X 2020, 6, 100049. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gómez, P.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J. Impact of climate change on water balance components and droughts in the Guajoyo River Basin (El Salvador). Water 2019, 11, 2360. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Gassman, P.W.; Liang, J.; Haywood, J.M. A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Sci. Total. Environ. 2021, 795, 148915. [Google Scholar] [CrossRef] [PubMed]
- Sikder, S.; David, C.; Allen, G.H.; Qiao, X.; Nelson, E.J.; Matin, M.A. Evaluation of available global runoff datasets through a river model in support of transboundary water management in South and Southeast Asia. Front. Environ. Sci. 2019, 7, 171. [Google Scholar] [CrossRef]
- Lakew, H.B.; Moges, S.A.; Anagnostou, E.N.; Nikolopoulos, E.I.; Asfaw, D.H. Evaluation of global water resources reanalysis runoff products for local water resources applications: Case study-upper blue Nile basin of Ethiopia. Water Resour. Manag. 2019, 34, 2157–2177. [Google Scholar] [CrossRef]
- Yen, H.; Wang, R.; Feng, Q.; Young, C.-C.; Chen, S.-T.; Tseng, W.-H.; Wolfe III, J.E.; White, M.J.; Arnold, J.G. Input uncertainty on watershed modeling_ evaluation of precipitation and air temperature data by latent variables using SWAT. Ecol. Eng. 2018, 122, 16–26. [Google Scholar] [CrossRef]
- MARN Plan Nacional de Gestión Integrada Del Recurso Hídrico de El Salvador, Con Énfasis En Zonas Prioritarias. Minist. De Medio Ambiente Y Recur. Nat. 2017. Available online: https://cidoc.marn.gob.sv/documentos/plan-nacional-de-gestion-integrada-del-recurso-hidrico-de-el-salvador-con-enfasis-en-zonas-prioritarias/ (accessed on 11 July 2021).
- Wozab, D.; Jovel, J.R. Hydrological analysis of volcanic terrane: Lower basin of the rio grande de san miguel el salvador. Int. Assoc. Sci. Hydrol. Bull. 1970, 15, 47–66. [Google Scholar] [CrossRef]
- Levard, C.; Basile-Doelsch, I. Geology and mineralogy of imogolite-type materials. In Developments in Clay Science; Elsevier BV: Amsterdam, The Netherlands, 2016; Volume 7, pp. 49–65. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Krysanova, V.; Arnold, J.G. Advances in ecohydrological modelling with SWAT—A review. Hydrol. Sci. J. 2008, 53, 939–947. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Alcalá, F.J.; Liu, S.; Jimeno-Sáez, P. Coupling SWAT model and CMB method for modeling of high-permeability bedrock basins receiving inter basin groundwater flow. Water 2020, 12, 657. [Google Scholar] [CrossRef] [Green Version]
- Yasir, M.; Hu, T.; Hakeem, S.A. Impending hydrological regime of lhasa river as subjected to hydraulic interventions—a SWAT model manifestation. Remote Sens. 2021, 13, 1382. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Liu, S.; Pérez-Sánchez, J.; López-Ballesteros, A.; Jimeno-Sáez, P. Assessing impacts of climate variability and reforestation activities on water resources in the headwaters of the Segura River Basin (SE Spain). Sustainability 2018, 10, 3277. [Google Scholar] [CrossRef] [Green Version]
- Woldesenbet, T.A.; Elagib, N.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the upper blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Feng, Q.; Yin, Z.; Wen, X.; Si, J.; Li, C.; Deo, R. Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrol. Process. 2017, 31, 1100–1112. [Google Scholar] [CrossRef]
- López-Ballesteros, A.; Senent-Aparicio, J.; Martínez, C.; Pérez-Sánchez, J. Assessment of future hydrologic alteration due to climate change in the Aracthos River basin (NW Greece). Sci. Total. Environ. 2020, 733, 139299. [Google Scholar] [CrossRef] [PubMed]
- Senent-Aparicio, J.; Pérez-Sánchez, J.; Carrillo-García, J.; Soto, J. Using SWAT and Fuzzy TOPSIS to assess the impact of climate change in the headwaters of the Segura River Basin (SE Spain). Water 2017, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.; Senent-Aparicio, J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021, 13, 2014. [Google Scholar] [CrossRef]
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Hargreaves, G.H. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- Abbaspour, K.C. User Manual for SWAT-Cup, SWAT Calibration and Uncertainty Analysis Programs; Swiss Federal Institute of Aquatic Science and Technology, Eawag: Duebendorf, Switzerland, 2007. [Google Scholar]
- Le, M.-H.; Lakshmi, V.; Bolten, J.; Du Bui, D. Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam Basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Xu, C.-Y.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and hydrological evaluation of the latest Integrated Multi-satellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in South China. Atmos. Res. 2018, 214, 418–429. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D. A comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of Peninsular Spain. Water 2018, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Brighenti, T.M.; Bonumá, N.B.; Grison, F.; Mota, A.D.A.; Kobiyama, M.; Chaffe, P.L.B. Two calibration methods for modeling streamflow and suspended sediment with the SWAT model. Ecol. Eng. 2019, 127, 103–113. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Choudhury, B.J.; Garcia, M. Multitemporal Analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeorol. 2007, 8, 1165–1183. [Google Scholar] [CrossRef]
- Magaña, V.; Amador, J.A.; Medina, S. The midsummer drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Peterson, J.R.; Hamlett, J.M. Hydrologic calibration of the SWAT model in a watershed containing fragipan soils. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 531–544. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Arnold, J.; Muttiah, R.; Srinivasan, R.; Allen, P. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J. Hydrol. 2000, 227, 21–40. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.C.; Ungurean, C.; Adorjani, A.; Mihalache, A.L.; Davidescu, A.A.; Davidescu, Ș.O.; Dinca, L.; Cacovean, H. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environ. Res. 2020, 184, 109330. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.M.; Dantas, J.C.; Beltrão, J.D.A.; Santos, C.A.G. Hydrological simulation in a tropical humid basin in the Cerrado biome using the SWAT model. Hydrol. Res. 2018, 49, 908–923. [Google Scholar] [CrossRef]
- Sánchez-Murillo, R.; Esquivel-Hernández, G.; Corrales-Salazar, L.; Castro-Chacón, L.; Durán-Quesada, A.; Guerrero-Hernández, M.; Delgado, V.; Barberena, J.; Montenegro-Rayo, K.; Calderón, H.; et al. Tracer hydrology of the data-scarce and heterogeneous Central American Isthmus. Hydrol. Process. 2020, 2660–2675. [Google Scholar] [CrossRef]
- Jang, W.S.; Engel, B.; Ryu, J. Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). Ecol. Eng. 2018, 125, 50–67. [Google Scholar] [CrossRef]
- Eini, M.R.; Javadi, S.; Delavar, M.; Monteiro, J.; Darand, M. High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin. Ecol. Eng. 2019, 131, 107–119. [Google Scholar] [CrossRef]
Code | Station | Latitude (°) | Longitude (°) | Elevation (m) | Missing Data (%) 1 |
---|---|---|---|---|---|
MIG | San Miguel | 13.4690 | −88.1590 | 98 | 11.3/1.2 |
CHA | Chapeltique | 13.6424 | −88.2608 | 207 | 25.4 |
DEL | El Delirio | 13.3274 | −88.1416 | 92 | 41.4 |
VIL | Villerías | 13.5187 | −88.1795 | 109 | 51.7 |
Parameter | Description | ERA5 | CHIRPS-CHIRTS | CFSR | |||
---|---|---|---|---|---|---|---|
Ranking | p-Value | Ranking | p-Value | Ranking | p-Value | ||
CN2.mgt | SCS runoff curve number | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 |
ALPHA_BF.gw | Baseflow alpha factor (day−1) | 10 | 0.551 | 11 | 0.799 | 7 | 0.552 |
GWQMN.gw | Threshold depth of water in the shallow aquifer for return flow to occur (mm) | 2 | 0.003 | 4 | 0.024 | 2 | 0.002 |
GW_REVAP.gw | Groundwater revap coefficient | 5 | 0.114 | 8 | 0.229 | 4 | 0.068 |
RCHRG_DP.gw | Deep aquifer percolation fraction | 11 | 0.555 | 6 | 0.100 | 3 | 0.032 |
REVAPMN.gw | Threshold depth of water in shallow aquifer for revap or percolation to deep aquifer to occur (mm) | 9 | 0.531 | 10 | 0.704 | 10 | 0.637 |
CANMX.hru | Maximum canopy storage (mm) | 12 | 0.573 | 12 | 0.909 | 8 | 0.564 |
EPCO.bsn | Plant uptake compensation factor | 8 | 0.451 | 7 | 0.186 | 6 | 0.531 |
ESCO.bsn | Soil evaporation compensation factor | 4 | 0.015 | 2 | 0.000 | 5 | 0.32 |
SOL_AWC.sol | Available water capacity of the soil layer (mm H2O/mm soil) | 7 | 0.202 | 5 | 0.037 | 11 | 0.672 |
LAT_TTIME.hru | Lateral flow travel time (day) | 6 | 0.175 | 9 | 0.489 | 12 | 0.806 |
SLSOIL.hru | Slope length for lateral subsurface flow (m) | 3 | 0.012 | 3 | 0.006 | 9 | 0.610 |
Station | Dataset | M | SD | CC | RMSE (mm) | ME (mm) | BIAS (%) | POD | FAR | CSI |
---|---|---|---|---|---|---|---|---|---|---|
MIG | Observed | 1469 | 274 | - | - | - | - | - | - | - |
ERA5 | 2105 | 303 | 0.43/0.85 | 13.54/115.23 | 6.04/72.05 | 38.32/40.60 | 0.91 | 0.50 | 0.48 | |
CHIRPS | 1752 | 285 | 0.52/0.93 | 10.71/61.44 | 4.55/41.87 | 13.33/15.69 | 0.79 | 0.35 | 0.54 | |
CFSR | 1441 | 356 | 0.27/0.84 | 12.91/71.01 | 5.70/51.54 | −4.64/−4.75 | 0.79 | 0.48 | 0.44 | |
CHA | Observed | 1561 | 470 | - | - | - | - | - | - | - |
ERA5 | 2204 | 495 | 0.38/0.80 | 15.55/124.38 | 6.87/78.05 | 18.95/25.19 | 0.92 | 0.42 | 0.55 | |
CHIRPS | 1991 | 268 | 0.55/0.88 | 11.56/82.54 | 5.38/54.25 | 6.70/10.01 | 0.82 | 0.27 | 0.63 | |
CFSR | 1441 | 356 | 0.34/0.85 | 13.54/94.53 | 6.25/62.46 | −21.73/−20.47 | 0.79 | 0.41 | 0.51 | |
DEL | Observed | 1136 | 731 | - | - | - | - | - | - | - |
ERA5 | 1994 | 549 | 0.49/0.83 | 14.33/123.69 | 5.97/82.61 | 46.89/48.62 | 0.89 | 0.53 | 0.45 | |
CHIRPS | 1821 | 341 | 0.62/0.86 | 11.13/97.85 | 5.06/63.11 | 31.66/33.74 | 0.80 | 0.40 | 0.52 | |
CFSR | 1817 | 385 | 0.38/0.86 | 13.56/92.77 | 5.97/65.00 | 27.86/30.30 | 0.89 | 0.54 | 0.43 | |
VIL | Observed | 1023 | 627 | - | - | - | - | - | - | - |
ERA5 | 2106 | 519 | 0.41/0.86 | 12.53/103.13 | 5.56/69.76 | 49.77/48.90 | 0.91 | 0.49 | 0.48 | |
CHIRPS | 1785 | 263 | 0.51/0.91 | 9.73/76.38 | 4.48/50.54 | 30.86/31.97 | 0.79 | 0.36 | 0.54 | |
CFSR | 1441 | 356 | 0.27/0.84 | 11.50/62.68 | 5.03/40.79 | −0.07/0.78 | 0.75 | 0.48 | 0.44 |
Parameter | Range | Calibrated Value | ||
---|---|---|---|---|
ERA5 | CHIRPS-CHIRTS | CFSR | ||
CN2.mgt | −0.2 to 0.2 | −0.199 | −0.117 | −0.157 |
ALPHA_BF.gw | 0.01 to 1 | 0.85555 | 0.5099 | 0.24333 |
GWQMN.gw | 0 to 5000 | 4765 | 3675 | 195 |
GW_REVAP.gw | 0.02 to 0.2 | 0.1167 | 0.1026 | 0.0846 |
RCHRG_DP.gw | 0 to 1 | 0.315 | 0.065 | 0.785 |
REVAPMN.gw | 0 to 500 | 356.5 | 302.5 | 320.5 |
CANMX.hru | 0 to 100 | 90.9 | 95.7 | 29.5 |
EPCO.bsn | 0 to 1 | 0.499 | 0.819 | 0.365 |
ESCO.bsn | 0 to 1 | 0.8155 | 0.801 | 0.861 |
SOL_AWC.sol | −0.3 to 0.3 | 0.055 | −0.1974 | −0.213 |
LAT_TTIME.hru | 0 to 180 | 48.06 | 108.90 | 15.3 |
SLSOIL.hru | 0 to 150 | 43.35 | 38.55 | 35.25 |
Parameter | Dataset | |||||
---|---|---|---|---|---|---|
ERA5 | CHIRPS-CHIRTS | CFSR | ||||
Calibration | Validation | Calibration | Validation | Calibration | Validation | |
R2 | 0.88 | 0.82 | 0.78 | 0.78 | 0.82 | 0.60 |
NSE | 0.87 | 0.81 | 0.77 | 0.70 | 0.81 | 0.54 |
PBIAS (%) | −11.68 | −13.36 | 7.34 | −30.70 | −3.29 | −32.31 |
KGE | 0.86 | 0.81 | 0.85 | 0.65 | 0.88 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senent-Aparicio, J.; Blanco-Gómez, P.; López-Ballesteros, A.; Jimeno-Sáez, P.; Pérez-Sánchez, J. Evaluating the Potential of GloFAS-ERA5 River Discharge Reanalysis Data for Calibrating the SWAT Model in the Grande San Miguel River Basin (El Salvador). Remote Sens. 2021, 13, 3299. https://doi.org/10.3390/rs13163299
Senent-Aparicio J, Blanco-Gómez P, López-Ballesteros A, Jimeno-Sáez P, Pérez-Sánchez J. Evaluating the Potential of GloFAS-ERA5 River Discharge Reanalysis Data for Calibrating the SWAT Model in the Grande San Miguel River Basin (El Salvador). Remote Sensing. 2021; 13(16):3299. https://doi.org/10.3390/rs13163299
Chicago/Turabian StyleSenent-Aparicio, Javier, Pablo Blanco-Gómez, Adrián López-Ballesteros, Patricia Jimeno-Sáez, and Julio Pérez-Sánchez. 2021. "Evaluating the Potential of GloFAS-ERA5 River Discharge Reanalysis Data for Calibrating the SWAT Model in the Grande San Miguel River Basin (El Salvador)" Remote Sensing 13, no. 16: 3299. https://doi.org/10.3390/rs13163299
APA StyleSenent-Aparicio, J., Blanco-Gómez, P., López-Ballesteros, A., Jimeno-Sáez, P., & Pérez-Sánchez, J. (2021). Evaluating the Potential of GloFAS-ERA5 River Discharge Reanalysis Data for Calibrating the SWAT Model in the Grande San Miguel River Basin (El Salvador). Remote Sensing, 13(16), 3299. https://doi.org/10.3390/rs13163299