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Abstract: This paper couples the Soil and Water Assessment Tool (SWAT) model and the chloride
mass balance (CMB) method to improve the modeling of streamflow in high-permeability bedrock
basins receiving interbasin groundwater flow (IGF). IGF refers to the naturally occurring groundwater
flow beneath a topographic divide, which indicates that baseflow simulated by standard hydrological
models may be substantially less than its actual magnitude. Identification and quantification of IGF is
so difficult that most hydrological models use convenient simplifications to ignore it, leaving us with
minimal knowledge of strategies to quantify it. The Castril River basin (CRB) was chosen to show
this problematic and to propose the CMB method to assess the magnitude of the IGF contribution
to baseflow. In this headwater area, which has null groundwater exploitation, the CMB method
shows that yearly IGF hardly varies and represents about 51% of mean yearly baseflow. Based on this
external IGF appraisal, simulated streamflow was corrected to obtain a reduction in the percent bias
of the SWAT model, from 52.29 to 22.40. Corrected simulated streamflow was used during the SWAT
model calibration and validation phases. The Nash–Sutcliffe Efficiency (NSE) coefficient and the
logarithmic values of NSE (lnNSE) were used for overall SWAT model performance. For calibration
and validation, monthly NSE was 0.77 and 0.80, respectively, whereas daily lnNSE was 0.81 and 0.64,
respectively. This methodological framework, which includes initial system conceptualization and a
new formulation, provides a reproducible way to deal with similar basins, the baseflow component
of which is strongly determined by IGF.

Keywords: SWAT model; CMB method; interbasin groundwater flow; Castril River; baseflow filter

1. Introduction

Hydrological models have become essential tools for water management issues due to their ability
to simulate the hydrological cycle through integrated and multidisciplinary approaches, along with
their skills to simulate climate change scenarios, land use, and water management [1]. Reliability of such
models depends on the spatial and temporal scales covered, as well as the capacity to conceptualize
the system functioning [2–4]. Those hydrological models operating at a basin scale are powerful
decision support tools because they can provide insights into water resource management [5]. Among
them, the SWAT (Soil and Water Assessment Tool) model, a physically-based and semi-distributed
eco-hydrological open access model [6] stands out. SWAT can simulate the quality and quantity of
surface water and groundwater balance components at different catchment scales to predict the impact
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of climate change on the water balance of large watersheds [7,8] and deduce the effect of human-induced
actions on water resources, such as irrigation practices and land-use changes [9]. A recent review of
water quality and erosion models reveals that SWAT is, by far, the most used model [10]. However, a
downside of SWAT is related to the simplified groundwater concept [11]. The simplified representation
of the groundwater discharge and aquifer storage processes has been highlighted by several authors as
something that may lead to a misunderstanding of the hydrological processes that occur in groundwater
dominated watersheds [12].

One of these limitations is SWAT’s inability to consider interbasin groundwater flow (IGF). IGF can
be defined as the naturally occurring groundwater flow beneath the topographic divide that defines
the basin boundary introduced in the SWAT model and in other hydrological models. It contributes
to the baseflow of another basin different from that from which it was generated [13]. The magnitude
of IGF may be especially relevant in high-permeability bedrock areas, such as steep karst areas. IGF
maintains permanent streamflow in dry seasons, thus significantly altering the water balance of a
region [14]. Despite the fact that IGF is a common hydrological process in large karst areas, it is often
difficult to estimate, even tentatively [15]. Methodologies to identify and quantify IGF have traditionally
relied on physical techniques, including the soil–water budget and water fluctuation, when there
are sufficient data [16,17], tracer techniques measuring mostly environmental chemicals and stable
isotope contents of precipitation and stream water [18,19], and groundwater modeling tools for indirect
evaluations [20,21]. Some studies have aimed to assess IGF using the SWAT model. More specifically,
Palanisamy and Workman (2014) [22] developed the KarstSWAT model to simulate IGF in watersheds
dominated by typical karst features, determining input (recharge in sinkholes) and output (discharge in
springs) water component dynamics. Malagó et al. (2016) [23] developed the KSWAT model, which
was based on a combination of two previous SWAT applications: (1) a SWAT model adaptation to
consider fast infiltration through caves and sinkholes up to the deep aquifers developed by Baffaut and
Benson (2009) [24] and (2) a karst flow model in Excel to simulate spring flow discharge developed by
Nikolaidis et al. (2013) [25]. More recently, Nguyen et al. (2020) [14] proposed a two linear reservoir
model to represent the duality of aquifer recharge and discharge processes in a karst-dominated area
in Germany. However, this interest is ongoing and, to our knowledge, the SWAT model has yet to be
combined with the CMB method to improve hydrological cycle simulation in those basins where there
is a difference between groundwater flow divides and surface topographic divides.

The evaluation of IGF is a complex, uncertain task when groundwater system functioning is partially
unknown and the spatiotemporal coverage of data is too low to implement suitable evaluation techniques.
In general, spatiotemporal coverage of environmental variables decreases in mountainous areas, thereby
limiting the range of suitable techniques to assess IGF and other water balance components. In ungauged
areas, IGF can be indirectly assessed when enough is known about groundwater system functioning to
assert that IGF equals net aquifer recharge, which is the typical circumstance in most mountainous karst
areas in a natural regime. In steep basins with gaining streams under a natural (undisturbed) regime,
long-term net aquifer recharge (R) and discharge can be equated when groundwater abstraction, direct
evapotranspiration from shallow aquifers, and underflow to deep aquifers are virtually null [26,27].
In such undisturbed hydrological functioning, net aquifer discharge equals the baseflow component of
streamflow [28–31], and the problem shrinks to a matter of implementing suitable and viable techniques
to determine R. Note that R is the infiltration amount that effectively contributes to the aquifer storage
after some delay, smoothing out the variability inherent to precipitation events [32,33]. To assess
renewable groundwater resources that finally reach streambeds, R is the governing variable [4,34].

Different methods can be used for R [35,36]. An independent, well-known method to determine R
is the atmospheric Chloride Mass Balance (CMB) method [37–41]. The CMB method has been widely
applied in different orographic, climatic, and geological contexts to yield mostly long-term (steady) R
estimates when recharge water salinity can be attributed to the atmospheric salinity that reaches the
water table. The CMB method was recently used to assess distributed mean R from precipitation and its
uncertainty over continental Spain by verifying that the CMB variables were steady long-term [34,42].
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This data availability was the reason the CMB method was chosen to assess IGF in areas with no
human activities. In other territories, other techniques strictly intended for regional R can be selected
for IGF evaluations when there are available data sets of similarly sufficient confidence.

This paper aims to evaluate the reliability of coupling the SWAT model and the CMB method to
improve the modeling of streamflow in high-permeability bedrock basins receiving IGF. To that end,
two main methodological steps are introduced. The first conceptualizes the hydrogeological functioning
to confidently estimate IGF from existing CMB datasets for a control period and introduces a new
formulation to generate a long-term baseflow series. The second step integrates corrected baseflow
series into the SWAT model to improve the streamflow simulation. This methodology has been applied
to the Castril River basin (CRB), which is an undisturbed, high-permeability bedrock area, characterized
by the strong contribution of IGF to streamflow, as evidenced by a preliminary surface runoff coefficient
greater than one.

2. Materials and Methods

2.1. Study Area

The Castril River is an aquifer-fed mountain stream located 37◦47’–37◦59’ north and 2◦40’–2◦50’
west at the headwater of the Guadalquivir River watershed (GRW) in the province of Granada in
southern Spain, adjacent to the Segura River watershed (SRW) (Figure 1a). The Castril River basin
(CRB) headwater extends from the GRW-SRW divide (peak elevation is 2130 m a.s.l. in the north) to
the Portillo Reservoir (outlet is 837 m a.s.l. in the south), covers an area of about 120 km2, and flows
southward among the Sierra de Castril (west) and Sierra Seca (east) Mountains [43] (Figure 1b).

The climate is comparable to the continental Mediterranean, according to the Köppen classification [44].
Average annual precipitation is about 770 mm, with a coefficient of variation of 0.31 over the period
1951–2017. Precipitation is generated by Atlantic weather fronts coming in from the west and by short,
intense Mediterranean convective storms. Most precipitation occurs during the autumn and spring.
In winter, wet westerly and cold northerly winds predominate, whilst in summer and autumn, wet
easterly and warm southerly winds blow [45]. Based on the period 1951–2016, the average annual
temperature is about 8 ◦C, with the lowest temperatures in January and the highest in August. Average
annual potential evapotranspiration is about 800 mm [46].

Geologically, the area belongs to the inner Prebetic domain of the external zone of the Alpine
Betic Chain, which includes the following synthetic succession from bottom to top [47,48]: (1) Triassic
gypsum-rich marls and clays (Keuper facies) with occasional limestones (Muschelkalk facies); (2)
Lower and Middle Jurassic dolomites and oolitic limestones; (3) Upper Jurassic nodule limestones,
calcareous marls, and marls; (4) Lower Cretaceous dolomites, dolomitic limestones, and marls; (5) Upper
Cretaceous calcareous marls, marls, and dolomitic limestones; and (6) Paleocene to Middle Miocene
limestones, marls, and calcarenites [48,49]. Small Late Quaternary alluvial deposits intermittently fill
the valleys (Figure 1c).

From a hydrogeological point of view, geological materials can be classified into four groups,
attending to the permeability type and storage capacity reported by the Geological Survey of Spain
(IGME) (1988, 1995, 2001) [50–52]: (1) Triassic marls and clays are low-permeability materials that form
the impervious boundary of local aquifers; (2) Jurassic and Cretaceous carbonate materials form highly
permeable aquifers as thick as 300 m and have manifest karst features; (3) Jurassic and Cretaceous marls
and calcareous marls are low-permeability materials, often confining the above Jurassic and Cretaceous
carbonate materials; and (4) Late Quaternary alluvial deposits form temporary unconfined aquifers
(Figure 1c).
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 Figure 1. (a) Location of the Castril River basin (CRB) within the Guadalquivir River watershed (GRW)
in southern Spain, adjacent to the Segura River watershed (SRW). (b) Discretization of the CRB and
29 sub-basins using the 25 m resolution Digital Elevation Model (DEM) from the Spanish National
Geographic Institute, showing other features cited in the text. (c) After the Geological Survey of Spain
(IGME) (1988, 1995, 2001) [50–52] and direct field observations, a hydrogeological map of the CRB
(scale 1:200,000), the schematic hydrogeological functioning of the CRB and the hydraulically connected
upstream GRW and SRW contributing areas, a hydrogeological cross-section A–A′ showing aquifer
dimensions, CBR location, groundwater divides and flow paths, and the 10 km × 10 km cells for
distributed net aquifer recharge (R) in the part of continental Spain [34,42] covered in the study area
was developed.



Water 2020, 12, 657 5 of 19

Hydrogeological functioning of the area was defined by IGME (1988, 1995, 2001) [50–52]. Aquifer
boundaries, groundwater divides, and groundwater flow paths were established from hydrogeological
maps, piezometry, and chemical and isotopic data. These hydrogeological criteria enabled experts
to identify preferred areas for aquifer recharge in summits and for aquifer discharge, at the precise
place where the incisive valley topography intersects the piezometry of Cretaceous carbonate aquifers
to generate intermittent (upstream) and permanent (downstream) springs (Figure 1c). Downstream,
outside the study area, Pliocene and Quaternary alluvial formations fill the Castril River valley and
form an unconfined aquifer that hydraulically connects to the stream [43].

The study area is within the Sierra de Castril Natural Park, which has been an environmentally
protected space since 1989, and is catalogued as a zone of special conservation for wildlife by the
European Natura 2020 network. With respect to land use, forest, grassland, woodland and shrubland,
sparsely vegetated areas, bare areas, and marginal rain-fed crops occupy most of the basin surface
(Figure 2). Other marginal uses are seasonal livestock (sheep and goats), irrigated traditional crops,
and riverine forest of Pinus nigra and Pinus Halepensis [53]. Neither permanent human settlements nor
relevant water uses exist.
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Figure 2. Land-use map (scale 1:25,000) from the Andalusian Environmental Information Network
(REDIAM).

2.2. Overall Model Description

A coupled application of the SWAT model and the CMB method to improve streamflow simulation
by considering IGF is introduced. This application includes four steps, shown as bulleted lists (Figure 3).
The first step uses the CMB method to assess the magnitude of IGF contributing to the CRB baseflow
from another upstream GRW and SRW areas, as described in Section 2.3. The second step uses the
automated digital filter program BFLOW to split daily streamflow records into baseflow and surface
runoff components, as a prerequisite to correct streamflow records by adding IGF to the baseline
component, as described in Section 2.4. The third step uses the SWAT model to compare simulated
streamflow with and without IGF, as described in Section 2.5. The fourth step uses the SWAT model
for standard calibration and validation of simulated streamflow by considering the IGF correction, as
described in Section 2.5.
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Figure 3. Flow diagram for the coupled Soil and Water Assessment Tool (SWAT) model and chloride
mass balance (CMB) method application to model streamflow of hydrological basins subjected to
interbasin groundwater flow (IGF).

2.3. CMB Method

2.3.1. CMB Method Application for Aquifer Recharge over Continental Spain

The atmospheric chloride mass balance (CMB) is one of the most widely used methods to estimate
net aquifer recharge (R) from precipitation in different orographic, climatic, and geological contexts [35,36].
The CMB is a global method based on the principle of mass conservation of a conservative tracer, in this
case the chloride ion, atmospherically contributing to the land surface. This technique yields mostly
long-term (steady) R estimations when recharge water salinity can be attributed to the atmospheric
salinity that reaches the water table [37–41].

The CMB method was recently applied to estimate distributed spatial mean R and its natural
uncertainty (standard deviation) over continental Spain. For a confident application, the long-term
steady condition of the CMB variables: atmospheric chloride bulk deposition, chloride export flux by
surface runoff, and recharge water chloride content was verified [34,42,54]. This evaluation examined the
influence of hydraulic properties (mostly permeability and storability) of different aquifer lithologies on
R estimates, as well as the potential contribution of non-atmospheric sources of chloride [55]. For local
usage, the reliability and hydrological meaning of distributed R were evaluated by comparing them
with local, presumably trustworthy R estimates; one of these local cases was the CRB. Ordinary kriging
was used to regionalize the CMB variables at the same 4976 nodes of a 10 km × 10 km grid. In each grid
node a mean R value was estimated. Nodal R values were affected by two main types of uncertainty,
the natural variability of the CMB variables and the error from its mapping. These uncertainties were
identified and estimated [34,42].

The evaluation covered a 10-year period, which represented the critical balance period for the CMB
variables to reach comparable steady means and standard deviations. This 10-year period matches
the decadal global climatic cycles acting on the Iberian Peninsula, with irregular ~5-year positive and
negative phases that follow the North Atlantic Oscillation trend [45,56]. Considering that (1) at least
a 10-year balance period is required for reliably steady R evaluations in continental Spain and (2)
the CMB datasets preferably spanned the period 1994–2007, the control period (1996–2005), which
span a full 10-year long NAO climatic cycle, was chosen to estimate R in this work. Other authors
have also implemented these CMB datasets for reliable local R evaluations in different climatic and
geological settings, such as Andreu et al. (2011) [27] in Sierra de Gádor karst Massif in Southern Spain,
Raposo et al. (2013) [57] in varied geological contexts in Galicia, on the coast of Northern Spain, and
Barberá et al. (2018) [58] in the high-mountain, weathered-bedrock Bérchules basin in Southern Spain.
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2.3.2. IGF Series Generation

As introduced in Section 1, long-term steady R and IGF can be made equivalent in steep basins
with gaining stream under natural (undisturbed) regime when groundwater abstractions, direct
evapotranspiration from shallow aquifers, and underflow to deep aquifers are virtually null, and
the hydrogeological functioning is well-defined [28–31]. This is the case of the CRB, as described in
Section 2.1, because human water use is virtually null and there is enough hydrogeological information.
The fraction of R produced in upstream contributing areas can be used as a reliable proxy for the
additional baseflow fraction contributing to the CRB baseline [26,27]. To assess the IGF, R is the significant
factor [4,34].

As described above, several cells, each one yielding a nodal mean R value and its standard deviation
for the control period (1996–2005) instead of a yearly R series, cover the CRB and upstream contributing
areas. Adapted from Pulido-Velázquez et al. (2018) [59], a procedure is introduced to obtain the yearly
R series by adopting the temporal structure of the yearly P series for the control period (1996–2005).
This model uses a correction function that forces the control R series to have the same relative deviation
as the control P series, while maintaining the magnitude of its initial mean and standard deviation.
The calibrated function is applied to obtain a yearly R series, presuming the correction function does
not change. The calculation includes the following steps:

Average change in mean and standard deviation of P and R for the same control period (1996–2005):

∆m =
m(R) −m(P)

m(P)
(1a)

∆σ =
σ(R) − σ(P)
σ(P)

(1b)

where ∆m is the change in mean and ∆σ is the change in standard deviation.
Normalization of the yearly P series:

Pni =
Pi − P
σR

(2)

where Pi is i–year P and Psi is its normalized value, P is mean P, and σR is standard deviation of mean R.
Generation of yearly R series from yearly P series:

Ri = mC + σC·Psi (3)

where Ri is i–year R, and mC and σC are expressed as:

mC = m(P)·(1 + ∆m) (4a)

σC = σ(P)·(1 + ∆σ) (4b)

When Equation (4) is applied to the control yearly P series, the generated yearly R series adopts the
same mean and standard deviation as the control R series from Alcalá and Custodio (2014, 2015) [34,42].
When this procedure is applied to the full yearly P series, the equivalent yearly R series is obtained by
assuming that the bias correction remains invariant over the full observation period.

2.4. BFLOW Program

The automated digital filter program (BFLOW) to split daily streamflow records into the baseflow
and surface runoff components was used. Nathan and McMahon (1990) [60] were the first to
implement this recursive digital filter technique for baseflow analysis. The hypothesis of BFLOW
is that low-frequency signals represent the baseflow component while high-frequency signals represent
the runoff component [61]. This technique gives results similar to those obtained using other automated
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models or manual techniques despite having no physical basis. BFLOW has been used in many studies
related to the SWAT model [30,62]; see Arnold and Allen (1999) [63] for more details about this technique.
The baseflow obtained by BFLOW was increased by adding IGF, calculated in previous section.

2.5. SWAT Model

2.5.1. Description of the SWAT Model

The Soil and Water Assessment Tool (SWAT) is a long-term watershed hydrological model with
strong physical mechanisms, developed jointly in 1994 by the Agricultural Research Service of the
United States Department of Agriculture (USDA-ARS) and Texas A&M AgriLife Research, part of the
Texas A&M University System. The SWAT model simulation includes atmospheric precipitation, surface
runoff, subsurface flow, evapotranspiration, groundwater flow, river network flow concentration, and
other intermediate water balance components subjected to variable delays [6]. The SWAT model first
divides the study area into several hydrological response units (HRUs) based on the digital elevation
model (DEM), land use, soil type, and meteorological data. Then, SWAT establishes a hydrophysical
conceptual model of each HRU, calculates runoff in each HRU, and finally connects the entire set of
the HRU runoff responses through the river network of the study area toward the basin outlet. The
hydrological processes simulated by the SWAT model are based on the following water balance equation:

SWt = SW0 +
t∑

i=1

(
Pday − Eday − Qsurf −Wseep −Qgw

)
i

(5)

where SWt is final soil–water content (mm H2O), SW0 is initial soil–water content (mm H2O), t is time
(days), Pday is precipitation on day i (mm H2O), ETday is evapotranspiration on day i (mm H2O), Qsurf
is surface runoff on day i (mm H2O), Wseep is water amount that enters the vadose zone from the soil
profile on day i (mm H2O), and Qgw is groundwater return flow on day i (mm H2O).

2.5.2. Data, Model Set-Up, Calibration, and Validation

Datasets used to implement the SWAT model were: (1) the 25-m resolution DEM from the
Spanish National Geographic Institute (IGN); (2) the land-use map (scale 1:25,000) from the Andalusian
Environmental Information Network (REDIAM); (3) the 1-km resolution georeferenced soil data
from the World Soil Coordination Map; (4) the 5-km resolution nodal daily precipitation series in
Spain from the Spanish National Weather Service (AEMET) grid version 1.0, which cover the period
1951–2017; (5) the 10-km resolution nodal daily temperature series in Spain from the fifth version of the
high-resolution SPAIN02 grid, which cover the period 1951–2016; and (6) the 24-h streamflow records
downloaded from the Spanish Centre for Public Works Studies and Experimentation (CEDEX) website.
The open source QGIS interface for SWAT (QSWAT 1.8) was used to set up the SWAT model.

The SUFI-2 algorithm of SWAT-CUP (Calibration and Uncertainty Programs) to calibrate and
validate the SWAT model was used. Based on our previous modeling experiences [64,65], twenty-one
widely used flow calibration parameters and their ranges were initially selected. Aimed at reaching
an acceptable calibration, two iterations (representing 500 simulations each) were performed; the
first included 13 parameters on a monthly scale, the latter included 8 parameters on a daily scale.
To mitigate the effect of initial soil–water condition, a five-year warm-up period was imposed [66].
The periods 1995–1997 and 1982–1984 were, respectively, selected for the calibration and validation
phases. As the downloaded daily streamflow (discharge) series was discontinuous, time intervals for
calibration and validation were carefully selected to minimize the effect of existing data gaps.

As the CRB is a singular aquifer-fed mountain stream, some quantitative information to cross-
validate the SWAT model results were used. For model efficiency criteria, Nash-Sutcliffe efficiency
coefficient (NSE), logarithmic form of the NSE (lnNSE), coefficient of determination (R2), percent bias
(PBIAS), Root Mean Square Error (RMSE), and RMSE relative to standard deviation of the observed
data (RSR) were used (Table 1).
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Table 1. Equations, ranges, and optimal values for SWAT model performance statistics, after Moriasi et al. (2012) [67].

Statistic and Equation 1 Description

NSE : Nash–Sutcliffe Efficiency Coefficient

= 1−
∑n

i=1(Qobs i−Qsim i)
2∑n

i=1(Qobs i−Q¯)2

NSE indicates a perfect match between observed and simulated data, and ranges from −∞ to 1. Higher
than 0.5 is considered satisfactory.

lnNSE= 1−
∑n

i=1(ln(Qobs i)−ln(Qsim i))
2∑n

i=1

(
ln(Qobs i)−ln(Q)

)2
lnNSE is the logarithmic form of the model efficiency coefficient. NSE emphasizes the high flows, and

lnNSE emphasizes the low flows.

R2 : Coe f ficient o f Determination

=

 ∑n
i=1(Qobs i−Q)(Qsim i−Qsim i)√∑n

i=1(Qobs i−Q)
2
√∑n

i=1(Qsim i−Qsim i)
2

2
R2 indicates the degree of linear relationship between simulated and observed data, and ranges from 0

to 1. Higher than 0.5 is considered a satisfactory result.

PBIAS : Percent Bias
=

∑n
i=1(Qobs i−Qsim i)∆100∑n

i=1(Qobs i)

PBIAS calculates the average tendency of the simulated data to be higher or lower than their observed
counterparts. The optimal value is 0, and an acceptable one is between ±25.

RMSE : Root Mean Square Error

=

√
n∑

i=1
(Qobs i −Qsim i)

2
RMSE = 0 indicates a perfect match between observed and simulated data. Increasing RMSE values

indicate that matching is getting worse.

RSR : Root Mean Square Error relative to standard
deviation of the observed data

= RMSE
STDEVobs

=

√∑n
i=1(Qobs i−Qsim i)

2√∑n
i=1(Qobs i−Qsim i)

2

RSR is RMSE relative to standard deviation of the observed data, and ranges from 0 to∞. The lower the
RSR, the lower the RMSE and the better the model performance. Lower than 0.7 is acceptable.

1 n is the total number of observations, Qobs i and Qsim i are observed and simulated streamflow at observation i, Q is the mean of the observed data over the simulation period, and Qsim i is
the mean of the simulated data over the simulation period.
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3. Results and Discussion

3.1. Using the CMB Datasets to Estimate IGF

As shown in Figure 1c, the entire hydrogeological system that contributes to streamflow at the
CRB outlet covers the CRB surface itself and some hydraulically connected adjacent areas from GRW
and SRW. The methodology described in Section 2.3 was applied to the nodal R values gathered from
those 10 km × 10 km cells covering the CRB and those contributing to upstream GRW and SRW areas.
Attending to the hydrogeological functioning (Figure 1c) and existing land and water uses (Figure 2),
nodal mean values and standard deviations of R and baseflow can be assumed to be equal.

In this area, for the control period (1996–2005), nodal mean R varied within the range 143–332 mm year–1,
which means recharge–precipitation ratios were in the 0.29–0.37 range; the standard deviation of mean
R varied within the 39–90 mm year–1 range, which placed the given coefficients of variation of mean
annual R (mean value-to-standard deviation ratio) in the 0.27–0.30 range (Table 2). For the control
period (1996–2005), fitting parameters were calculated to generate the yearly R data series in the
CRB and upstream GRW and SRW contributing areas, which are in Table 3, whereas the generated
surface-weighted yearly P and R series are in Table 4. In each area, yearly R and P series for the control
period (1996–2005) were compared. The resulting parametric functions allowed for the extension of
the calculated yearly R series to cover the yearly P full record (1951–2016) (Figure 4). Figure 5 shows
the full yearly baseflow series generated within the CBR, as well as the yearly surface-weighted IGF
series contributed by upstream GRW and SRW areas. As observed, IGF is somewhat higher than
baseflow, generated within the CRB. IGF is about 51% of total CRB baseflow.

Table 2. For the 10 km × 10 km cells covering the CRB and upstream GRW and SGW contributing
areas, the CMB datasets gathered from Alcalá and Custodio (2014, 2015) [34,42].

Cell 1 CRB GRW SRW

S P 2 CVP R CVR S P CVP R CVR S P CVP R CVR

3200 3.2 894 0.31 315 0.27 0.8 894 0.31 315 0.27
3201 10.4 909 0.33 332 0.27 20.2 909 0.33 332 0.27
3202 60.6 693 0.34 229 0.28 4.8 693 0.34 229 0.28
3203 7.1 486 0.35 143 0.27
3275 1.0 813 0.32 276 0.27 21.7 813 0.32 276 0.27
3276 22.0 668 0.33 206 0.29 14.5 668 0.33 206 0.29 25.0 668 0.33 206 0.29
3277 1.8 517 0.35 153 0.30 1.1 517 0.35 153 0.30
3349 0.1 687 0.32 212 0.27 0.5 687 0.32 212 0.27
3350 2.0 612 0.33 186 0.28 0.5 612 0.33 186 0.28

Sum 101.9 46.9 48.4

SWA 3 692 0.34 227 0.28 787 0.33 269 0.28 736 0.32 239 0.28
1 Cell ID as in Figure 1c. 2 S is surface in km2, P and R are, respectively, mean precipitation and mean net aquifer
recharge over the control period (1996–2005) in mm year–1; and CVP and CVR are the dimensionless coefficients of
variation of mean P and R over the control period (1996–2005) as fractions. 3 SWA is surface-weighted average.

Table 3. Fitting parameters for the CRB and upstream GRW and SGW areas.

Parameter 1 CRB GRW SRW

∆m −0.67 −0.66 −0.67
∆σ −0.73 −0.71 −0.72
mC 227 269 239
σC 63.1 74.9 66.8
1 ∆m and ∆σ are dimensionless, and mC and σC are in mm year–1.
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Table 4. For the control period (1996–2005), surface-weighted yearly series of (i) P and R in the CRB
and in upstream GRW and SRW areas, and (ii) IGF from the GRW and SRW area contributing to CRB.

Year P 1 Psi 1 R, CRB 1 R, GRW R, SRW IGF, GRW+SRW 2

1996 1037.9 1.76 338.5 401.4 357.1 378.9
1997 978.9 1.47 319.8 379.2 337.3 357.9
1998 472.3 −1.08 159.2 188.7 167.4 177.9
1999 575.4 −0.56 191.9 227.5 202.0 214.6
2000 669.5 −0.09 221.7 262.9 233.6 248.0
2001 742.6 0.28 244.9 290.4 258.1 274.0
2002 616.8 −0.35 205.0 243.1 215.9 229.3
2003 723.7 0.19 238.9 283.3 251.8 267.3
2004 641.5 −0.23 212.9 252.4 224.2 238.1
2005 406.9 −1.40 138.5 164.1 145.5 154.7

Mean 3 686.6 227.1 269.3 239.3 240.1
SD 199.2 63.1 74.9 66.8 66.8
CV 0.29 0.28 0.28 0.28 0.28

1 P and R are, respectively, annual precipitation and net aquifer recharge in mm year−1, and Psi is dimensionless
normalized yearly P. 2 IGF is interbasin groundwater flow in mm year−1. 3 Mean and SD are mean and standard
deviation over the control period (1996–2005) in mm year−1, and CV is dimensionless coefficient of variation as
a fraction.
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Figure 4. For the control period (1996–2005), parameterization of yearly P–R functions in the CRB and
upstream GRW and SRW contributing areas; yearly R equals yearly baseflow. Yearly IGF series refers
to the surface-weighed sum of upstream R = baseflow from GRW and SRW areas contributing to the
CRB streamflow. In all cases, the Pearson coefficient of correlation is 1.

3.2. Comparison of SWAT Model Results with and without IGF

Based on DEM analysis and after SWAT model implementation, the CRB was discretized into
29 sub-basins. Based on the combination of land uses, soil types, and slope ranges (<2%, 2%–8%,
>8%), 149 HRUs were defined. The thresholds for defining HRUs were set to 5% to optimize model
processing. The Hargreaves non-global method was used to simulate potential evapotranspiration [68].
As a result, only precipitation and temperature data to run the SWAT model were needed.

As described in Section 3.1, the IGF from upstream GRW and SRW areas greatly contributes to
the Castril River streamflow. For the period 1995−1997, the SWAT model was doubly implemented
on a monthly scale with and without IGF. The result was a large difference between observed and
initial simulated streamflow when IGF was omitted (Figure 6). When IGF was included as an additional
baseflow fraction, the difference between observed and corrected simulated streamflow clearly narrowed.
This preliminary trial at model performance showed that the statistics NSE and PBIAS improve when
IGF was included (Figure 6). Overall model performance increased about 80% in absolute terms.
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Figure 5. For the full period (1951–2016), (a) surface-weighted yearly P series in the area compiled
from the Spanish National Weather Service (AEMET) grid version 1.0 and cumulative deviation (CD)
from mean yearly P in mm year−1; and (b) generated yearly baseflow series in the CRB and yearly
surface-weighed IGF series from upstream GRW and SRW contributing areas in mm year−1, and IGF
fraction relative to total CRB baseflow (IGF–CRB) dimensionless ratio. The control period (1996–2005) is
grey shallowed (CP). Vertical dotted lines indicate selected time intervals for the SWAT model warm-up
(W), calibration (C), and validation (V) phases.
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Figure 6. For the selected calibration period (1995−1997) and on a monthly scale, observed streamflow
compared to (i) initial simulated streamflow without IGF and (ii) corrected simulated streamflow with
IGF. The statistics NSE and PBIAS show the model performance achieved in each simulation.

3.3. Calibration and Validation of SWAT Model Including IGF

A total of 21 SWAT parameters were optimized using the SUFI-2 algorithm from SWAT-CUP.
As described in Section 2.5.2, parameter selection was based on our previous research experiences
in similar basins in Southern Spain [64,65]. The SWAT calibration phase covered a 3-year period
(1995–1997). The final ranges used and the final fitted values of these parameters are given in Table 5.

The magnitude of calibrated GW_REVAP, ESCO, LAT_TTIME, GWQMN, and ALPHA_BF
parameters is quite similar to those obtained with similar orography, geology, climate, and land
use [64,65]. The ESCO is also similar to that fitted in other Mediterranean karst areas, where yearly
actual evapotranspiration is typically 0.7–0.9 fold yearly precipitation [26,27,46]. The low value of
ALPHA_BF indicates a slow aquifer response [69]. This is corroborated by the long-delayed responses
to recharge events in similar karst aquifers in the region, reported by Moral et al. (2008) [70].
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Table 5. Description of parameters used for SWAT model calibration in the CRB.

Parameter 1 Description Range Used in Calibration Fitted Value

r_CN2.mgt Soil Conservation Service (SCS) runoff curve number −0.1 to 0.1 0.08
v_ALPHA_BF.gw Baseflow alpha factor (day−1) 0 to 1 0.11
a_GW_DELAY.gw Groundwater delay time (day) 0 to 60 2.82

a_GWQMN.gw Threshold depth of water in the shallow aquifer for return flow to occur (mm) −200 to 1000 898.00
v_GW_REVAP.gw Groundwater revap coefficient 0.02 to 0.1 0.09
a_RCHRG_DP.gw Deep aquifer percolation fraction −0.05 to 0.05 0.04

a_REVAPMN.gw Threshold depth of water in shallow aquifer for revap or percolation to deep
aquifer to occur (mm) −500 to 500 −61.00

v_CANMX.hru Maximum canopy storage (mm) 0 to 8 0.47
v_EPCO.bsn Plant uptake compensation factor 0.5 to 1 0.56
v_ESCO.bsn Soil evaporation compensation factor 0.3 to 0.8 0.61

r_SOL_AWC.sol Available water capacity of the soil layer (mm H2O/mm soil) −0.02 to 0.02 −0.02
v_LAT_TTIME.hru Lateral flow travel time (day) 0 to 180 76.50

v_SLSOIL.hru Slope length for lateral subsurface flow (m) 0 to 150 1.35
r_SLSUBBSN.hru Average slope length (m) −0.5 to 0.5 0.08
r_HRU_SLP.hru Average slope steepness (m/m) −0.5 to 0.5 0.40

v_OV_N.hru Manning’s ‘n’ value for overland flow 0.01 to 1 0.61
r_CH_S1.sub Average slope of tributary channels (m/m). −0.5 to 0.5 0.26
v_CH_N1.sub Manning’s ‘n’ value for the tributary channels 0.01 to 30 1.68
r_CH_S2.rte Average slope of main channel along the channel length (m/m) −0.5 to 0.5 −0.04
v_CH_N2.rte Manning’s ‘n’ value for the main channel 0.01 to 0.3 0.04

v_SURLAG.bsn Surface runoff lag coefficient 0.05 to 24 20.71
1 (r_) refers to relative change, i.e., the current parameter must be multiplied by (1 + the value obtained in calibration), (v_) means that the existing parameter value must be replaced by the
value obtained in calibration, and (a_) refers to absolute change, i.e., the fitted value must be added to the existing value of the parameter.
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Corrected streamflow records with IGF were used for model calibration (1995–1997) and validation
(1982–1984) phases. Observed streamflow was compared to corrected simulated streamflow on monthly
(Figure 7) and daily (Figure 8) scales during the calibration and validation periods. In the CRB, the
fitted SWAT model replicated, almost identically, the trend of the streamflow hydrograph. The higher
fluctuations in the simulated peaks and the lower ones in low flows were found, both in monthly and
daily streamflow simulations.
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SWAT model for the (a) calibration and (b) validation phases.

As observed in Figure 8, low flows predominate in the CRB daily streamflow record. As many
other SWAT models reported for other similar aquifer-fed karst areas, the SWAT model performance for
high and normal flows decreased in the face of predominant low flows [65,71]. Therefore, following the
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suggestion of Krause et al. (2005) [72], NSE and InNSE were used to measure, respectively, the high and
the low flows, to reduce the problem of the squared differences and the resulting sensitivity to extreme
values of NSE. Calibration and validation of monthly corrected streamflow showed good agreement of
simulated and observed data, as indicated by the model performance statistics for monthly and daily
simulations given in Table 6.

Table 6. SWAT model performance statistics for corrected simulated monthly and daily streamflow
during calibration and validation phases.

Statistic Time Step Calibration Validation

NSE Monthly 0.77 0.8
R2 Monthly 0.92 0.89

PBIAS Monthly 19.82 17.25
RSR Monthly 0.48 0.44

lnNSE Daily 0.81 0.64

As finally deduced, the SWAT model performs well and can be used for further analysis in the CRB
and in other similar high-permeability bedrock basins, the baseflow of which is strongly determined by
IGF. For this, there must be a confident evaluation of IGF or, at minimum, a reliable external evaluation
available. In this paper, the CMB method and the available CMB datasets in continental Spain [34,42]
were used for this purpose. However, as described for other groundwater and surface water coupling
models, the SWAT-CMB application presented here reveals the following overall problems: (1) the
spatial (size and volume) and temporal (renovation rate) scales of groundwater and surface water
bodies differ, whereas the coupling model can only simulate the same spatial and temporal scale in
both types of bodies; (2) the coupling models had defects in the coupling mechanism processing, which
demanded substantial simplification of the coupling process, thereby causing model distortion; and (3)
this coupling model was established for a certain region or a specific problem and, although good
results have been achieved, there is no general adaptability, so additional hydrogeological knowledge
of local applications is needed to consider the changes in scale effects and actual flow conditions.

4. Conclusions

This paper presents the combined application of the SWAT model and the CMB method to model
streamflow in the CRB, a representative high-permeability bedrock basin where the streamflow is
significantly determined by IGF from upstream contributing areas. The CMB method and available
CMB datasets in continental Spain were used for the IGF that adds to the baseflow generated within the
CRB. The SWAT model performance improved noticeably when simulated streamflow with IGF was
used. Using the CMB datasets for streamflow correction, the SWAT model showed good performance
both in daily and monthly simulations. Some overall remarks from this research are highlighted below.

The influence of IGF on basins like the CRB is remarkable. Therefore, IGF must be considered to
improve water resource evaluation and management in this kind of basin located in the headwater
of large river watersheds. In the CRB, IGF means about 51% of total baseflow. We do not suggest
using the SWAT model alone for modeling of these aquifer-fed mountain basins. It must be coupled
with other specific methods to accurately assess IGF. The CMB was revealed to be a suitable method
for IGF, because of the favorable hydrogeological setting and the negligible groundwater abstraction,
which allowed for equivalent net aquifer recharge to the baseflow contributing to streamflow in the
headwater of large river watersheds. In other areas that reflect different patterns of groundwater
use and hydrogeological features, assessment of IGF must rely on other techniques coupled with the
SWAT model.
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