Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. PT-JPL Algorithm
2.2. PT-SM Algorithm
2.3. Evaluation
2.4. Eddy Covariance (EC) Flux Data
2.5. Observed Meteorological and Hydrological Data
2.6. Remote Sensing NDVI, EVI, and LAI Data
2.7. Canopy Height and Soil Moisture Data
3. Results
3.1. Spatial Distribution Characteristics of Soil Moisture
3.2. Comparison of Algorithm Parameters
3.3. Comparison of Incorporating Soil Moisture into Soil Evaporation and Transpiration
3.4. Model Evaluation with In Situ Forcing
3.5. Evapotranspiration Partitioning
3.6. Spatial Distributions of Mean Annual Evapotranspiration and Its Components
4. Discussion
4.1. Soil Water Availability Constraint on Evaporation and Transpiration
4.2. Contribution of Each ET Component to the Total ET
4.3. Inter-Annual Variability of ET for 2003–2015
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Evaristo, J.; Jasechko, S.; Mcdonnell, J.J. Global separation of plant transpiration from groundwater and streamflow. Nature 2015, 525, 91–94. [Google Scholar] [CrossRef]
- Monteith, J.L.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat fluxes and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189–190, 115–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Biron, P.; Braud, I.; Canale, L.; Durant, J.L.; Gaudet, J.P.; Richard, P.; Vauclin, M.; Bariac, T. Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrol. Process. 2010, 24, 3177–3194. [Google Scholar] [CrossRef]
- Cavanaugh, M.L.; Kurc, S.A.; Scott, R.L. Evapotranspiration partitioning in semiarid shrubland ecosystems: A two-site evaluation of soil moisture control on transpiration. Ecohydrology 2011, 4, 671–681. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Chaney, N.W.; Wood, E.F. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteorol. 2014, 187, 46–61. [Google Scholar] [CrossRef]
- Sutanto, S.J.; van den Hurk, B.; Dirmeyer, P.A.; Seneviratne, S.I.; Röckmann, T.; Trenberth, K.E.; Blyth, E.M.; Wenninger, J.; Hoffmann, G. HESS opinions “A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation”. Hydrol. Earth Syst. Sci. 2014, 18, 2815–2827. [Google Scholar] [CrossRef] [Green Version]
- McCabe, M.F.; Ershadi, A.; Jimenez, C.; Miralles, D.G.; Michel, D.; Wood, E.F. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev. 2016, 9, 283–305. [Google Scholar] [CrossRef] [Green Version]
- Aouade, G.; Jarlan, L.; Ezzahar, J.; Er-Raki, S.; Napoly, A.; Benkaddour, A.; Khabba, S.; Boulet, G.; Garrigues, S.; Chehbouni, A.; et al. Evapotranspiration partition using the multiple energy balance version of the ISBA-A-gs land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco). Hydrol. Earth Syst. Sci. 2020, 24, 3789–3814. [Google Scholar] [CrossRef]
- Scanlon, T.M.; Kustas, W.P. Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agric. For. Meteorol. 2010, 150, 89–99. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Condon, L.E. Connections between groundwater flow and transpiration partitioning. Science 2016, 353, 377–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Jia, L.; Fan, W. Estimation of actual evapotranspiration and its components in an irrigated area by integrating the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization algorithm. Agric. For. Meteorol. 2021, 307, 108488. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Miralles, D.G.; De Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [Google Scholar] [CrossRef] [Green Version]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Colliander, A.; Halverson, G.; Tu, K.; Famiglietti, J.S. SMAP soil moisture improves global evapotranspiration. Remote Sens. Environ. 2018, 219, 1–14. [Google Scholar] [CrossRef]
- Talsma, C.J.; Good, S.P.; Jimenez, C.; Martens, B.; Fisher, J.B.; Miralles, D.G.; McCabe, M.F.; Purdy, A.J. Partitioning of evapotranspiration in remote sensing-based models. Agric. For. Meteorol. 2018, 260–261, 131–143. [Google Scholar] [CrossRef]
- Daly, E.; Porporato, A. A review of soil moisture dynamics: From rainfall infiltration to ecosystem response. Environ. Eng. Sci. 2005, 22, 9–24. [Google Scholar] [CrossRef]
- Gu, H.; Lin, Z.; Guo, W.; Deb, S. Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images. Remote Sens. 2021, 13, 145. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Mecikalski, J.R.; Anderson, M.C.; Holmes, T. An intercomparison of available soil moisture estimates from thermal-infrared and passive microwave remote sensing and land-surface modeling. J. Geophys. Res. 2011, 116, D15107. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm. Agric. For. Meteorol. 2013, 171–172, 187–202. [Google Scholar] [CrossRef]
- Fernández-Prieto, D.; van Oevelen, P.; Su, Z.; Wagner, W. Advances in earth observation for water cycle science. Hydrol. Earth Syst. Sci. 2012, 16, 543–549. [Google Scholar] [CrossRef]
- Rebel, K.T.; de Jeu, R.A.M.; Ciais, P.; Viovy, N.; Piao, S.L.; Kiely, G.; Dolman, A.J. A global analysis of soil moisture derived from satellite observations and a land surface model. Hydrol. Earth Syst. Sci. 2012, 16, 833–847. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.; García, G.A.; Venturini, V.; Carrasco, A. Regional evapotranspiration estimates using the relative soil moisture ratio derived from SMAP products. Agric. Water Manag. 2019, 216, 254–263. [Google Scholar] [CrossRef]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Leroux, D. Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the US. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1530–1543. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Gao, L.; Ebtehaj, A.; Wigneron, J.P.; Crow, W.T.; Reager, J.T.; Warrick, A.W. Retrieving global surface soil moisture from GRACE satellite gravity data. J. Hydrol. 2020, 124717. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Li, J.; Wang, Y.; Sun, F.; Zhang, L. Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019. Earth Syst. Sci. Data 2021, 13, 1385–1401. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Yong, B.; Liu, C.; Feng, X.; Dong, Q. Estimating monthly evapotranspiration by assimilating remotely sensed water storage data into the extended Budyko framework across different climatic regions. J. Hydrol. 2018, 567, 684–695. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-ii data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 2016, 6, 1023–1027. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Liu, Y.; Gan, G.; Wu, G. SMAP underestimates soil moisture in vegetation-disturbed areas primarily as a result of biased surface temperature data. Remote Sens. Environ. 2020, 247, 111914. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108, D22. [Google Scholar] [CrossRef]
- Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of four soil moisture sensor types under field conditions in Switzerland. J. Hydrol. 2012, 430–431, 39–49. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.; He, J.; Zhao, L.; Lu, H.; Qin, J.; Zheng, D.H.; Li, X. Development of a daily soil moisture product for the period of 2002–2011 in Chinese Mainland. Sci. China Earth Sci. 2020, 63, 1113–1125. [Google Scholar] [CrossRef]
- Swenson, S. GRACE Monthly Mass Grids-Land; Jet Propulsion Laboratory: Pasadena, CA, USA, 2014. [Google Scholar]
- Mohamed, S.O.; Bertuzzi, P.; Bruand, A.; Raison, L.; Bruckler, L. Field evaluation and error analysis of soil water content measurement using the capacitance probe method. Soil Sci. Soc. Am. J. 1997, 61, 399–408. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, D.; Lü, H.; Fu, X.; Xiang, L.; Zhu, Y. A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. J. Hydrol. 2012, 475, 53–64. [Google Scholar] [CrossRef]
- Hirschi, M.; Mueller, B.; Dorigo, W.; Seneviratne, S.I. Using remotely sensed soil moisture for land-atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sens. Environ. 2014, 154, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.; Chen, H.; Zhang, W.; Nie, Y.; Gao, P.; Wang, K. Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest China. Environ. Earth Sci. 2015, 74, 2381–2391. [Google Scholar] [CrossRef]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil moisture drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Liu, J.G.; Xie, Z.H. Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach. Hydrol. Earth Syst. Sci. 2013, 17, 3355–3369. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Gash, J.H.; Holmes, R.H.; De Jeu, R.A.M.; Dolman, A.J. Global canopy interception from satellite observations. J. Geophys. Res. 2010, 115, D16122. [Google Scholar] [CrossRef]
- Gu, C.; Ma, J.; Zhu, G.; Yang, H.; Zhang, K.; Wang, Y.; Gu, C. Partitioning evapotranspiration using an optimized satellite-based ET model across biomes. Agric. For. Meteorol. 2018, 259, 355–363. [Google Scholar] [CrossRef]
- Llorens, P.; Domingo, F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 2007, 335, 37–54. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tetzlaff, D.; Dick, J.J.; Soulsby, C. Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment. Agric. For. Meteorol. 2017, 240–241, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamdan, O.Z.; Cruise, J.F. Soil moisture profile development from surface observations by principle of maximum entropy. J. Hydrol. Eng. 2010, 15, 327–337. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Kidd, R. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Gill, M.K.; McKee, M. Soil moisture data assimilation using support vector machines and ensemble Kalman filter. J. Am. Water Resour. Assoc. 2007, 43, 1004–1015. [Google Scholar] [CrossRef]
- Monsivais-Huertero, A.; Graham, W.D.; Judge, J.; Agrawal, D. Effect of simultaneous state-parameter estimation and forcing uncertainties on rootzone soil moisture for dynamic vegetation using EnKF. Adv. Water Resour. 2010, 33, 468–484. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.B.; Zhou, C.X.; Luo, Y.X.; Chen, J.; Zhao, T.L. Chinese province-level variations and trends in aerosol optical depth from recent 10 years of remote sensing data. Ecol. Environ. Sci. 2011, 20, 595–599. (In Chinese) [Google Scholar]
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Desai, A.R.; Nagy, Z.; Luo, J.; Kolb, T.E.; Olioso, A.; Xu, X.; Yao, L.; Kutsch, W. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci. Rep. 2014, 4, 7483. [Google Scholar] [CrossRef]
- Moran, M.S.; Scott, R.L.; Keefer, T.O.; Emmerich, W.E.; Hernandez, M.; Nearing, G.S.; Paige, G.B.; Cosh, M.H.; O’Neill, P.E. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agric. For. Meteorol. 2009, 149, 59–72. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Zhang, Y.; Huang, Y.; Wang, G. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resour. Res. 2016, 52, 1160–1175. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Ma, J.; Zhu, G.; Ma, T.; Han, T.; Feng, L.L. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data. J. Geophys. Res. Atmos. 2017, 122, 230–245. [Google Scholar] [CrossRef]
- Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tower | SITE_NAME | IGBP | LAT (°N) | LON (°E) | Time Period | NETWORK |
---|---|---|---|---|---|---|
CN-Din | Dinghushan | EBF | 23.17 | 112.54 | 2004–2005 | ChinaFLUX |
CN-Qia | Qianyanzhou | ENF | 26.74 | 115.06 | 2003–2005 | ChinaFLUX |
XSBN | Xishuangbanna | EBF | 21.90 | 101.27 | 2003–2005 | ChinaFLUX |
CN-Cha | Changbaishan | MF | 42.40 | 128.10 | 2003–2005 | ChinaFLUX |
DX | Daxing | Crop | 39.62 | 116.43 | 2008–2010 | WATER |
MY | Miyun | Crop | 40.63 | 117.32 | 2008–2010 | WATER |
QH | Qinghai | GRA | 37.60 | 101.33 | 2002–2004 | Asiaflux |
CN-Ha2 | Haibei Shrubland | OSH | 37.61 | 101.33 | 2003–2005 | ChinaFLUX |
YC | Yucheng | Crop | 36.96 | 116.63 | 2003–2005 | ChinaFLUX |
GT-1 | Guantao | Crop | 36.52 | 115.13 | 2008–2010 | WATER |
AR | Arou | GRA | 38.09 | 100.52 | 2009–2011 | WATER |
CN-Du2 | Duolun_grassland (D01) | GRA | 42.05 | 116.28 | 2006–2008 | USCCC |
CN-Cng | Changling | GRA | 44.59 | 123.51 | 2007–2010 | USCCC |
CN-Dan | Dangxiong | GRA | 30.50 | 91.07 | 2003–2005 | ChinaFLUX |
CN-Sw2 | Siziwang Grazed (SZWG) | GRA | 41.79 | 111.90 | 2011 | USCCC |
GT-2 | Guantan | DNF | 38.53 | 100.25 | 2010–2011 | WATER |
NMG | Neimenggu | GRA | 44.13 | 116.30 | 2004–2005 | ChinaFLUX |
Data | Designation | Time-Period | Resolution | Source | |
---|---|---|---|---|---|
Temporal Spatial | |||||
Total precipitation (mm) | P | January 2003–December 2015 | monthly | 0.1 × 0.1° | China Meteorological Forcing Dataset |
GRACE-derived land water storage changes (cm) | ∆TWS | January 2003–December 2015 | monthly | 1.0 × 1.0° | GRACE satellite images |
Soil relative humidity (%) | SRH | January 2003–December 2015 | 10-days | stationly | China Meteorological Forcing Dataset |
GLDAS-2 Noah Land Surface Model (LSM) L4 model outputs (kg m−2) | SM | January 2003–December 2015 | monthly | 0.25 × 0.25° | GLDAS-2 |
Soil-Moisture_from_ITPLDAS | SM | January 2002–December 2011 | daily | 0.25 × 0.25° | National Tibetan Plateau/Third Pole Environment Data Center |
Tower | PT-JPL | PT_Es | PT_T | PT-SM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | RMSE | Bias | R2 | NSE | RMSE | Bias | R2 | NSE | RMSE | Bias | R2 | NSE | RMSE | Bias | ||
CN-Din | 0.87 | 0.54 | 12.68 | −10.33 | 0.89 | 0.65 | 9.85 | −5.68 | 0.90 | 0.89 | 6.58 | −3.52 | 0.94 | 0.93 | 4.76 | −1.10 | |
CN-Qia | 0.96 | 0.96 | 6.30 | −2.29 | 0.96 | 0.96 | 5.77 | −0.17 | 0.96 | 0.94 | 7.38 | 4.43 | 0.96 | 0.91 | 8.87 | 6.40 | |
XSBN | 0.90 | 0.78 | 7.98 | −5.76 | 0.90 | 0.88 | 6.65 | −1.45 | 0.90 | 0.89 | 5.13 | 1.89 | 0.93 | 0.92 | 4.82 | 1.59 | |
CN-Cha | 0.98 | 0.91 | 8.50 | −6.28 | 0.98 | 0.92 | 6.57 | −3.18 | 0.98 | 0.94 | 5.27 | 1.58 | 0.98 | 0.97 | 4.87 | 2.46 | |
DX | 0.93 | 0.89 | 10.33 | −6.47 | 0.93 | 0.91 | 9.85 | −2.30 | 0.94 | 0.93 | 8.42 | −1.05 | 0.95 | 0.95 | 7.03 | 0.14 | |
MY | 0.95 | 0.94 | 8.41 | −3.00 | 0.95 | 0.95 | 7.57 | −1.05 | 0.96 | 0.96 | 7.80 | −0.62 | 0.97 | 0.96 | 7.00 | 1.33 | |
QH | 0.98 | 0.93 | 7.77 | −5.26 | 0.98 | 0.94 | 6.57 | −3.61 | 0.97 | 0.95 | 5.29 | −0.81 | 0.98 | 0.97 | 4.86 | 1.17 | |
CN-Ha2 | 0.98 | 0.90 | 10.20 | −7.68 | 0.99 | 0.95 | 7.15 | −5.10 | 0.99 | 0.99 | 3.48 | 0.66 | 0.99 | 0.98 | 4.59 | 2.90 | |
YC | 0.93 | 0.85 | 11.29 | −8.09 | 0.95 | 0.91 | 9.50 | −6.01 | 0.97 | 0.98 | 5.20 | −1.07 | 0.98 | 0.98 | 5.02 | 1.17 | |
GT-1 | 0.87 | 0.77 | 6.34 | −3.05 | 0.89 | 0.82 | 4.51 | −1.99 | 0.96 | 0.95 | 4.46 | 0.71 | 0.99 | 0.98 | 4.41 | 1.90 | |
AR | 0.86 | 0.79 | 13.01 | −7.70 | 0.90 | 0.84 | 8.17 | −5.46 | 0.97 | 0.94 | 7.83 | 0.88 | 0.98 | 0.97 | 6.96 | 2.35 | |
CN-Du2 | 0.91 | 0.82 | 7.29 | −5.15 | 0.93 | 0.86 | 5.32 | −3.54 | 0.99 | 0.99 | 3.06 | 0.75 | 0.98 | 0.96 | 5.42 | 3.77 | |
CN-Cng | 0.93 | 0.73 | 12.20 | −9.23 | 0.96 | 0.80 | 11.45 | −6.57 | 0.95 | 0.87 | 9.54 | 1.80 | 0.95 | 0.91 | 7.93 | 3.71 | |
CN-Dan | 0.91 | 0.69 | 17.48 | −8.69 | 0.93 | 0.76 | 10.87 | −5.67 | 0.96 | 0.95 | 7.81 | −2.64 | 0.98 | 0.97 | 6.92 | 2.03 | |
CN-Sw2 | 0.90 | 0.72 | 6.93 | −4.72 | 0.94 | 0.83 | 5.41 | −3.25 | 0.98 | 0.96 | 4.03 | 1.52 | 0.99 | 0.96 | 3.40 | 2.68 | |
GT-2 | 0.92 | 0.82 | 7.12 | −3.48 | 0.93 | 0.90 | 6.57 | −1.58 | 0.97 | 0.95 | 6.18 | 2.85 | 0.98 | 0.95 | 5.81 | 4.57 | |
NMG | 0.94 | 0.76 | 7.41 | −5.67 | 0.95 | 0.83 | 5.44 | −2.57 | 0.96 | 0.95 | 4.97 | 1.55 | 0.96 | 0.95 | 4.58 | 2.03 | |
Change rate (%) | PET/P < 1.7 | 0 | 6 | −16 | 3 | 1 | 12 | −29 | 6 | 2 | 14 | −31 | 8 | ||||
PET/P > 1.7 | 3 | 9 | −23 | 2 | 7 | 23 | −39 | 7 | 8 | 25 | −40 | 9 | |||||
All towers | 2 | 7 | −20 | 3 | 4 | 18 | −34 | 7 | 5 | 20 | −36 | 8 |
Landcover | Interception Ratio | |
---|---|---|
Current Study | Literature | |
Crop | 0.18 | 0.17 (Vinukollu et al. 2011); 0.12 (Gu et al. 2018) |
DNF | 0.14 | 0.12 (Vinukollu et al. 2011); 0.23 (Miralles et al. 2010) |
EBF | 0.15 | 0.14 (Vinukollu et al. 2011); 0.17 (Miralles et al. 2010); 0.16 (Gu et al. 2018) |
ENF | 0.19 | 0.19 (Vinukollu et al. 2011); 0.23 (Miralles et al. 2010); 0.12 (Gu et al. 2018) |
GRA | 0.16 | 0.14 (Vinukollu et al. 2011); 0.13 (Gu et al. 2018) |
MF | 0.19 | 0.19 (Vinukollu et al. 2011); 0.13 (Gu et al. 2018) |
OSH | 0.11 | 0.09 (Gu et al. 2018) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, W.; Wang, W.; Shao, Q.; Song, L.; Cao, M. Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data. Remote Sens. 2021, 13, 3118. https://doi.org/10.3390/rs13163118
Xing W, Wang W, Shao Q, Song L, Cao M. Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data. Remote Sensing. 2021; 13(16):3118. https://doi.org/10.3390/rs13163118
Chicago/Turabian StyleXing, Wanqiu, Weiguang Wang, Quanxi Shao, Linye Song, and Mingzhu Cao. 2021. "Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data" Remote Sensing 13, no. 16: 3118. https://doi.org/10.3390/rs13163118
APA StyleXing, W., Wang, W., Shao, Q., Song, L., & Cao, M. (2021). Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data. Remote Sensing, 13(16), 3118. https://doi.org/10.3390/rs13163118