Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground-Based Air Quality Monitoring and PM2.5 Pollution in the MMA
2.3. Data
2.3.1. Ground-Based PM2.5 and Meteorological Data
2.3.2. MODIS AOD Data
2.4. Model Development and Validation
2.4.1. Data Processing Overview
2.4.2. PM2.5 Concentration and MODIS AOD Spatiotemporal Collocation
2.4.3. MLR
2.4.4. ANN
3. Results
3.1. Effect of the Domain Size on AOD
3.2. MLR Models
3.3. Model Selection and General Seasonal Variation of the Relevant Variables
3.4. Performance of the Ensemble Models
4. Discussion
4.1. Spatial and Temporal Variability
4.2. Seasonal Variation in the Model Performance
4.3. Contributions in the Context of Latin America
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falcon-Rodriguez, C.I.; Osornio-Vargas, A.R.; Sada-Ovalle, I.; Segura-Medina, P. Aeroparticles, composition, and lung diseases. Front. Immunol. 2016, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005. Summary of Risk Assessment; World Health Organization (WHO): Geneva, Switzerland, 2006. [Google Scholar]
- United States Environmental Protection Agency (EPA). Section 6.0. Monitoring network design. In QA Handbook; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2008; Volume 2. [Google Scholar]
- Pinder, R.W.; Klopp, J.M.; Kleiman, G.; Hagler, G.S.; Awe, Y.; Terry, S. Opportunities and challenges for filling the air quality data gap in low- and middle-income countries. Atmos. Environ. 2019, 215, 116794. [Google Scholar] [CrossRef]
- Gupta, P.; Doraiswamy, P.; Levy, R.; Pikelnaya, O.; Maibach, J.; Feenstra, B.; Polidori, A.; Kiros, F.; Mills, K.C. Impact of California fires on local and regional air quality: The Role of a low-cost sensor network and satellite observations. GeoHealth 2018, 2, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R.; Park, R. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Shin, M.; Kang, Y.; Park, S.; Im, J.; Yoo, C.; Quackenbush, L.J. Estimating ground-level particulate matter concentrations using satellite-based data: A review. GISci. Remote Sens. 2019, 57, 174–189. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Liu, K. Evaluating the use of DMSP/OLS nighttime light imagery in predicting PM2.5 concentrations in the northeastern United States. Remote Sens. 2017, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, K.; Tian, J. Variability, predictability, and uncertainty in global aerosols inferred from gap-filled satellite observations and an econometric modeling approach. Remote Sens. Environ. 2021, 261, 112501. [Google Scholar] [CrossRef]
- Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, Y.; Li, X.; Liu, Z.; Lu, H.; Lu, Y.; Mao, Z.; Chen, X.; Li, N.; Ren, M.; et al. A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere 2016, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.A.; Kaufman, Y.J.; Zibordi, G.; Chern, J.D.; Mao, J.; Li, C.; Holben, B.N. Global monitoring of air pollution over land from the earth observing system-terra moderate resolution imaging spectroradiometer (MODIS). J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Engel-Cox, J.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Aparicio, G.; Gerardino, M.P.; Rangel, M.A. Gender gaps in birth weight across Latin America: Evidence on the role of air pollution. J. Econ. Race Policy 2019, 2, 202–224. [Google Scholar] [CrossRef]
- Carmona, J.M.; Gupta, P.; Lozano-García, D.F.; Vanoye, A.Y.; Yépez, F.D.; Mendoza, A. Spatial and temporal distribution of PM2.5 pollution over northeastern Mexico: Application of MERRA-2 reanalysis datasets. Remote Sens. 2020, 12, 2286. [Google Scholar] [CrossRef]
- Guevara-Luna, M.A.; Guevara-Luna, F.A.; Mendez-Espinosa, J.F.; Belalcazar-Cerón, L.C. Spatial and temporal assessment of particulate matter using AOD data from MODIS and surface measurements in the ambient air of Colombia. Asian J. Atmos. Environ. 2018, 12, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Téllez-Rojo, M.M.; Rothenberg, S.J.; Texcalac-Sangrador, J.L.; Just, A.C.; Kloog, I.; Rojas-Saunero, L.P.; Gutiérrez-Avila, I.; Bautista-Arredondo, L.F.; Tamayo-Ortiz, M.; Romero, M.; et al. Children’s acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City metropolitan area. Environ. Res. 2020, 180, 108868. [Google Scholar] [CrossRef]
- Vu, B.N.; Sánchez, O.; Bi, J.; Xiao, Q.; Hansel, N.N.; Checkley, W.; Gonzales, G.F.; Steenland, K.; Liu, Y. Developing an advanced PM2.5 exposure model in Lima, Peru. Remote Sens. 2019, 11, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Kwon, B.; Heo, J.; Hu, X.; Liu, Y.; Moon, T. Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks. Environ. Pollut. 2020, 256, 113395. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Yu, F.; Jia, H.; Hu, Y. Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? Atmos. Res. 2016, 181, 250–256. [Google Scholar] [CrossRef]
- Ginoux, P.; Deroubaix, A. Space observations of dust in east Asia. In Air Pollution in Eastern Asia: An Integrated Perspective; Bouarar, I., Wang, X., Brasseur, G.P., Eds.; Springer: Berlin, Germany, 2017; pp. 365–383. [Google Scholar]
- Che, H.; Yang, L.; Liu, C.; Xia, X.; Wang, Y.; Wang, H.; Wang, H.; Lu, X.; Zhang, X. Long-term validation of MODIS C6 and C6.1 Dark Target aerosol products over China using CARSNET and AERONET. Chemosphere 2019, 236, 124268. [Google Scholar] [CrossRef]
- Consejo Nacional de Población. Delimitación de Las Zonas Metropolitanas de México 2015. 2018. Available online: https://www.gob.mx/conapo/documentos/delimitacion-de-las-zonas-metropolitanas-de-mexico-2015 (accessed on 24 March 2021).
- INEGI. Censo de Población y Vivienda 2020. 2021. Available online: https://inegi.org.mx/programas/ccpv/2020/ (accessed on 27 May 2021).
- López-Ramos, E. Geología General y de México; Editorial Trillas: Mexico City, Mexico, 2008; ISBN 978-968-24-1176-2. [Google Scholar]
- Eguiluz, S.; Aranda, G.M.; Marret, R. Tectónica de La Sierra Madre Oriental, México. Bol. Soc. Geol. Mex. 2000, 53, 1–26. [Google Scholar] [CrossRef]
- Gobierno de Nuevo León, Secretaria de Desarrollo Sustentable de Nuevo León. Estrategia para la Calidad del Aire de Nuevo León. 2018. Available online: https://www.nl.gob.mx/publicaciones/estrategia-para-la-calidad-del-aire-de-nuevo-leon (accessed on 12 January 2021).
- Wakamatsu, S.; Kanda, I.; Okazaki, Y.; Saito, M.; Yamamoto, M.; Watanabe, T.; Maeda, T.; Mizohata, A. A Comparative Study of Urban Air Quality in Megacities in Mexico and Japan: Based on Japan-Mexico Joint Research Project on Formation Mechanism of Ozone, VOCs and PM2.5, and Proposal of Countermeasure Scenario; JICA Research Institute: Tokyo, Japan, 2017. [Google Scholar]
- Mancilla, Y.; Paniagua, I.Y.H.; Mendoza, A. Spatial differences in ambient coarse and fine particles in the Monterrey metropolitan area, Mexico: Implications for source contribution. J. Air Waste Manag. Assoc. 2019, 69, 548–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secretaria de Salud. Norma Oficial Mexicana NOM-025-SSA1-2014. Salud Ambiental. Valores Límite Permisibles para la Concentración de Partículas Suspendidas PM10 y PM2.5 en el Aire Ambiente y Criterios para su Evaluación; Secretaria de Salud: Mexico City, Mexico, 2014; p. 20.
- Blanco-Jiménez, S.; Altúzar, F.; Aguilar, G.; Pablo, M.; Benítez, M.A. Evaluation of suspended particulate matter PM2.5 in the metropolitan area of Monterrey. J. Air Waste Manag. Assoc. 2015, 69, 548–564. [Google Scholar]
- Mancilla, Y.; Mendoza, A.; Fraser, M.P.; Herckes, P. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico. Atmos. Chem. Phys. Discuss. 2015, 15, 18. [Google Scholar]
- Mancilla, Y.; Mendoza, A.; Fraser, M.P.; Herckes, P. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers. Atmos. Chem. Phys. Discuss. 2016, 16, 953–970. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.A.; Caballero, P.; Carrillo, O.; Mendoza, A.; Mejia, G.M. Chemical characterization and factor analysis of PM2.5 in two sites of Monterrey, Mexico. J. Air Waste Manag. Assoc. 2012, 62, 817–827. [Google Scholar] [CrossRef]
- Mancilla, Y.; Medina, G.; González, L.T.; Mendoza, A. Fine particles emission source profiles for a semi-arid urban center: Key markers and similarity tests. Rev. Int. Contam. Ambient 2021, 6, 237. [Google Scholar]
- Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-035-SEMARNAT-1993. Métodos de Medición para Determinar la concentración de Partículas Suspendidas Totales en el Aire Ambiente y los Procedimientos para la Calibración de los Equipos de Medición; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 1993; p. 18.
- Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-156-SEMARNAT-2012, Establecimiento y Operación de Sistemas de Monitoreo de la Calidad del Aire; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2012; p. 16.
- Levy, R.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.; Patadia, F.; Hsu, N.C. The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.; Hansell, R.A.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Sayer, A.; Munchak, L.A.; Hsu, N.C.; Levy, R.; Bettenhausen, C.; Jeong, M.J. MODIS collection 6 aerosol products: Comparison between aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks. A Comprehensive Foundation, 2nd ed.; Pearson Education: Delhi, India, 2005; ISBN 81-7808-300-0. [Google Scholar]
- Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms; Spartan Books: Washington, DC, USA, 1962. [Google Scholar]
- Shepherd, A.J. Second-Order Methods for Neural Networks: Fast and Reliable Training Methods for Multi-Layer Perceptrons; Springer: Berlin, Germany, 1997; p. 145. ISBN 978-1-4471-0953-2. [Google Scholar]
- Jiang, D.; Zhang, Y.; Hu, X.; Zeng, Y.; Tan, J.; Shao, D. Progress in developing an ANN model for air pollution index forecast. Atmos. Environ. 2004, 38, 7055–7064. [Google Scholar] [CrossRef]
- Mao, X.; Shen, T.; Feng, X. Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China. Atmos. Pollut. Res. 2017, 8, 1005–1015. [Google Scholar] [CrossRef]
- Sarle, W.S. Stopped training and other remedies for overfitting. In Proceedings of the 27th Symposium on The Interface of Computing Science and Statistics, Pittsburgh, PA, USA, 21–24 June 1995; pp. 352–360. [Google Scholar]
- Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, R. Empirical Research in Software Engineering: Concepts, Analysis, and Applications; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-1973-5. [Google Scholar]
- Remer, L.A.; Mattoo, S.K.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Paniagua, I.Y.H.; Clemitshaw, K.C.; Mendoza, A. Observed trends in ground-level O3 in Monterrey, Mexico, during 1993–2014: Comparison with Mexico City and Guadalajara. Atmos. Chem. Phys. Discuss. 2017, 17, 9163–9185. [Google Scholar] [CrossRef] [Green Version]
- Gobierno de Nuevo León, Protección Civil de Nuevo León. Programa Especial Para La Temporada Invernal 2020–2021. 2020. Available online: https://www.nl.gob.mx/publicaciones/programa-especial-para-la-temporada-invernal-2020-2021 (accessed on 14 May 2021).
- Christopher, S.; Gupta, P. Global distribution of column satellite aerosol optical depth to surface PM2.5 relationships. Remote Sens. 2020, 12, 1985. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Zhang, K.; Dong, W.; Lv, B.; Bai, Y. Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD. Environ. Sci. Technol. 2015, 49, 12280–12288. [Google Scholar] [CrossRef] [Green Version]
- Jauregui, E. Urban heat island development in medium and large urban areas in Mexico. Erdkunde 1987, 48–51. [Google Scholar] [CrossRef]
- Kumar, N.; Chu, A.; Foster, A. Remote sensing of ambient particles in Delhi and its environs: Estimation and validation. Int. J. Remote Sens. 2008, 29, 3383–3405. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tang, Q.; Gong, D.-Y.; Zhang, Z. Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sens. Environ. 2017, 198, 140–149. [Google Scholar] [CrossRef]
- Mancilla, Y.; Herckes, P.; Fraser, M.P.; Mendoza, A. Secondary organic aerosol contributions to PM2.5 in Monterrey, Mexico: Temporal and seasonal variation. Atmos. Res. 2015, 153, 348–359. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate Matter Air Quality Assessment Using Integrated Surface, Satellite, and Meteorological Products: Multiple Regression Approach. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: A neural network approach. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Zaman, N.A.F.K.; Kanniah, K.D.; Kaskaoutis, D.G. Estimating particulate matter using satellite-based aerosol optical depth and meteorological variables in Malaysia. Atmos. Res. 2017, 193, 142–162. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhou, C.; Wang, Z.; Feng, K.; Hubacek, K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean. Prod. 2017, 142, 1800–1809. [Google Scholar] [CrossRef]
- Ma, X.; Yu, F. Seasonal variability of aerosol vertical profiles over east US and west Europe: GEOS-Chem/APM simulation and comparison with CALIPSO observations. Atmos. Res. 2014, 140–141, 28–37. [Google Scholar] [CrossRef]
- Song, Z.; Fu, D.; Zhang, X.; Wu, Y.; Xia, X.; He, J.; Han, X.; Zhang, R.; Che, H. Diurnal and seasonal variability of PM2.5 and AOD in north China plain: Comparison of MERRA-2 products and ground measurements. Atmos. Environ. 2018, 191, 70–78. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Y.; Pan, X.; Wang, W. National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD. Remote Sens. 2016, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Shen, H.; Zeng, C.; Yuan, Q.; Zhang, L. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmos. Environ. 2017, 152, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Zhang, M. Modeling study on seasonal variation in aerosol extinction properties over China. J. Environ. Sci. 2014, 26, 97–109. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Zhao, X.; Li, W.; Qian, Y. Comparing ground operation-measured and remotely sensed fine-particulate matter data: A case to validate the Dalhousie product in China. IEEE Geosci. Remote Sens. Mag. 2019, 7, 20–28. [Google Scholar] [CrossRef]
- Just, A.C.; Wright, R.; Schwartz, J.; Coull, B.A.; Baccarelli, A.; Tellez-Rojo, M.M.; Moody, E.; Wang, Y.; Lyapustin, A.; Kloog, I. Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. Environ. Sci. Technol. 2015, 49, 8576–8584. [Google Scholar] [CrossRef] [Green Version]
- Santos-Damascena, A.; Akemi-Yamasoe, M.; Souza-Martins, V.; Rosas, J.; Rojas-Benavente, N.; Piñero-Sánchez, M.; Ithiro-Tanaka, N.; Nascimento-Saldiva, P.H. Exploring the relationship between high-resolution aerosol optical depth values and ground-level particulate matter concentrations in the metropolitan area of São Paulo. Atmos. Environ. 2021, 244, 117949. [Google Scholar] [CrossRef]
- Natali, L. The Use of Remote Sensing Products to Characterize Air Quality in São Paulo Metropolitan Region. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2008. [Google Scholar]
Product | SDS | Resolution |
---|---|---|
AOD_3K | Optical_Depth_Land_And_Ocean 1 | 3 km |
AOD_DT | Optical_Depth_Land_And_Ocean 1 | 10 km |
AOD_DB | Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate 2 | 10 km |
AOD_Cb | AOD_550_Dark_Target_Deep_Blue_Combined 3 | 10 km |
Days (N) 1 | (%) Days 2 | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|---|
AOD_3K | ||||||
D1 = 0.10° × 0.10° | 215 | 18.6 | 0.489 | 0.452 | 0.007 | 1.989 |
D2 = 0.25° × 0.25° | 476 | 41.2 | 0.257 | 0.263 | 0.005 | 2.012 |
D3 = 0.50° × 0.625° | 695 | 60.0 | 0.185 | 0.139 | 0.008 | 0.888 |
AOD_DT | ||||||
D1 = 0.10° × 0.10° | 4 3 | 0.3 | - - | - - | - - | - - |
D2 = 0.25° × 0.25° | 77 | 6.6 | 0.162 | 0.150 | 0.008 | 0.682 |
D3 = 0.50° × 0.625° | 640 | 55.5 | 0.155 | 0.132 | 0.002 | 0.812 |
AOD_DB | ||||||
D1 = 0.10° × 0.10° | 137 | 11.9 | 0.237 | 0.125 | 0.031 | 0.651 |
D2 = 0.25° × 0.25° | 189 | 16.4 | 0.202 | 0.126 | 0.020 | 0.651 |
D3 = 0.50° × 0.625° | 575 | 49.8 | 0.177 | 0.113 | 0.017 | 0.656 |
AOD_Cb | ||||||
D1 = 0.10° × 0.10° | 4 3 | 0.3 | - - | - - | - - | - - |
D2 = 0.25° × 0.25° | 77 | 6.6 | 0.162 | 0.150 | 0.008 | 0.682 |
D3 = 0.50° × 0.625° | 653 | 56.5 | 0.154 | 0.131 | 0.009 | 0.812 |
MLR Model 1 | Hourly Scheme | |||||
---|---|---|---|---|---|---|
N | Mean PM2.5 (µg m−3) | Std. Dev. | R | RMSE (µg m−3) | MAE (µg m−3) | |
PM2.5 Observed | 695 | 29.39 | 12.32 | |||
MLR_1 D1 | 215 | 28.85 | 13.24 | 0.35 | 15.06 | 9.29 |
MLR_1 D2 | 476 | 29.54 | 10.39 | 0.53 | 10.31 | 7.58 |
MLR_1 D3 | 695 | 29.39 | 10.80 | 0.50 | 10.75 | 7.90 |
MLR_2 D1 | 4 2 | - - | - - | - - | - - | - - |
MLR_2 D2 | 77 | 28.85 | 8.90 | 0.67 | 8.47 | 7.14 |
MLR_2 D3 | 640 | 29.53 | 10.70 | 0.58 | 10.64 | 7.84 |
MLR_3 D1 | 137 | 29.70 | 13.87 | - - 3 | 13.64 | 7.87 |
MLR_3 D2 | 189 | 31.29 | 10.60 | 0.59 | 10.40 | 7.79 |
MLR_3 D3 | 575 | 29.71 | 10.73 | 0.52 | 10.65 | 7.71 |
MLR_4 D1 | 4 2 | - - | - - | - - | - - | - - |
MLR_4 D2 | 77 | 28.85 | 8.90 | 0.67 | 8.47 | 7.14 |
MLR_4 D3 | 653 | 29.40 | 10.65 | 0.49 | 10.59 | 7.79 |
Daily Scheme | ||||||
PM2.5 Observed | 695 | 27.88 | 8.52 | |||
MLR_1 D1 | 215 | 28.07 | 9.08 | 0.48 | 8.95 | 6.14 |
MLR_1 D2 | 476 | 28.35 | 7.24 | 0.55 | 7.19 | 5.44 |
MLR_1 D3 | 695 | 27.88 | 7.03 | 0.57 | 7.00 | 5.29 |
MLR_2 D1 | 4 2 | - - | - - | - - | - - | - - |
MLR_2 D2 | 77 | 28.16 | 5.87 | 0.71 | 5.59 | 4.55 |
MLR_2 D3 | 640 | 28.10 | 6.95 | 0.57 | 6.91 | 5.34 |
MLR_3 D1 | 137 | 29.92 | 9.08 | - - 3 | 9.57 | 5.91 |
MLR_3 D2 | 189 | 30.26 | 7.40 | 0.57 | 7.26 | 5.84 |
MLR_3 D3 | 575 | 28.34 | 6.88 | 0.60 | 6.84 | 5.06 |
MLR_4 D1 | 4 2 | - - | - - | - - | - - | - - |
MLR_4 D2 | 77 | 28.16 | 5.87 | 0.71 | 5.59 | 4.55 |
MLR_4 D3 | 653 | 28.01 | 6.92 | 0.59 | 6.88 | 5.20 |
AOD_3K | T | RH | WS | U | V | ||
---|---|---|---|---|---|---|---|
β0 | β1 | β2 | β3 | β4 | β5 | β6 | |
Iteration 1 | 18.24 | +24.21 | +0.32 | +0.16 | −0.84 | −11.48 | +2.53 |
Iteration 2 | 20.67 | +22.92 | +0.21 | +0.16 | −0.83 | −11.41 | +2.98 |
Iteration 3 | 21.05 | +24.63 | +0.24 | +0.14 | −0.91 | −9.99 | +2.53 |
Iteration 4 | 19.64 | +24.68 | +0.28 | +0.15 | −0.83 | −12.37 | +3.30 |
Iteration 5 | 19.82 | +20.99 | +0.30 | +0.16 | −0.95 | −10.58 | +2.48 |
Iteration 6 | 17.58 | +23.05 | +0.28 | +0.17 | −0.75 | −11.31 | +2.90 |
Iteration 7 | 17.90 | +25.21 | +0.23 | +0.20 | −0.72 | −12.61 | +4.63 |
Iteration 8 | 21.19 | +26.62 | +0.22 | +0.15 | −0.96 | −11.05 | +2.63 |
Iteration 9 | 18.81 | +28.08 | +0.23 | +0.15 | −0.67 | −11.40 | +3.35 |
Iteration 10 | 19.16 | +22.20 | +0.28 | +0.17 | −0.80 | −12.25 | +4.50 |
Ensemble | 19.41 | +24.26 | +0.26 | +0.16 | −0.83 | −11.45 | +3.18 |
Non-ensemble | 19.40 | +23.80 | +0.26 | +0.16 | −0.80 | −11.60 | +3.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona, J.M.; Gupta, P.; Lozano-García, D.F.; Vanoye, A.Y.; Hernández-Paniagua, I.Y.; Mendoza, A. Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions. Remote Sens. 2021, 13, 3102. https://doi.org/10.3390/rs13163102
Carmona JM, Gupta P, Lozano-García DF, Vanoye AY, Hernández-Paniagua IY, Mendoza A. Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions. Remote Sensing. 2021; 13(16):3102. https://doi.org/10.3390/rs13163102
Chicago/Turabian StyleCarmona, Johana M., Pawan Gupta, Diego F. Lozano-García, Ana Y. Vanoye, Iván Y. Hernández-Paniagua, and Alberto Mendoza. 2021. "Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions" Remote Sensing 13, no. 16: 3102. https://doi.org/10.3390/rs13163102
APA StyleCarmona, J. M., Gupta, P., Lozano-García, D. F., Vanoye, A. Y., Hernández-Paniagua, I. Y., & Mendoza, A. (2021). Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions. Remote Sensing, 13(16), 3102. https://doi.org/10.3390/rs13163102