Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Gauge Precipitation Observations
2.3. Satellite Precipitation Estimates Products (SPEs)
2.3.1. PERSIANN
2.3.2. PCCS
2.3.3. PCDR
2.3.4. PCCSCDR
2.3.5. PDIR
2.3.6. CMORPH
2.3.7. IMERG
2.3.8. GSMaP
2.4. Other Data
2.5. Hydrological Model
2.6. Performance Metrics
3. Results
3.1. Model Calibration and Verification
3.2. Validation of Discharge Simulations at Four Gauged Hydrological Stations and Sub-Basin Scale
3.3. Spatial Scale Dependence of Simulation Performance
3.4. Product Selection Based on Spatial Scale Dependence
4. Discussion
4.1. Comparison with Previous Studies
4.2. Statement of Different SPEs in This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Standardization Scaling in the Radar Plot
References
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Wang, Z.; Wu, X.; Yin, J.; Qian, S.; Zhan, J. Changes in Extreme Precipitation across 30 Global River Basins. Water 2020, 12, 1527. [Google Scholar] [CrossRef]
- Schreiner McGraw, A.P.; Ajami, H. Impact of Uncertainty in Precipitation Forcing Data Sets on the Hydrologic Budget of an Integrated Hydrologic Model in Mountainous Terrain. Water Resour. Res. 2020, 56, e2020WR027639. [Google Scholar] [CrossRef]
- Tang, G.; Behrangi, A.; Long, D.; Li, C.; Hong, Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 2018, 559, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2016, 36, 252–265. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Hong, Y. Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China. J. Hydrol. 2018, 562, 71–83. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Guilloteau, C.; Nguyen, P.; Aghakouchak, A.; Hsu, K.; Busalacchi, A.; Turk, F.J.; Peters-Lidard, C.; Oki, T.; Duan, Q.; et al. Advancing Precipitation Estimation, Prediction, and Impact Studies. Bull. Am. Meteorol. Soc. 2020, 101, E1584–E1592. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 Day 0.1-Degree × 0.1-Degree V06; Savtchenko, A., Greenbelt, M.D., Eds.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Washington, DC, USA, 2019. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary (accessed on 21 December 2020). [CrossRef]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Aonashi, K.; Awaka, J.; Hirose, M.; Kozu, T.; Kubota, T.; Liu, G.; Shige, S.; Kida, S.; Seto, S.; Takahashi, N. GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Jpn. 2009, 87, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. Atmos. 2009, 114, D24101. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yong, B.; Shen, Y.; Liu, J.; Hong, Y.; Zhang, J. Comparison analysis of six purely satellite-derived global precipitation estimates. J. Hydrol. 2020, 581, 124376. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Zhu, Y.; Wang, X.; Wei, G. Component Analysis of Errors in Four GPM-Based Precipitation Estimations over Mainland China. Remote Sens. 2018, 10, 1420. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Wang, Y.; Chen, L.; Wang, Z.; Zhu, H.; Li, B. Inter-Comparison and Evaluation of Remote Sensing Precipitation Products over China from 2005 to 2013. Remote Sens. 2018, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Gebregiorgis, A.S.; Kirstetter, P.E.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.; Schwaller, M.R. To What Extent is the Day 1 GPM IMERG Satellite Precipitation Estimate Improved as Compared to TRMM TMPA-RT? J. Geophys. Res. Atmos. 2018, 123, 1694–1707. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Nwachukwu, P.N.; Satge, F.; Yacoubi, S.E.; Pinel, S.; Bonnet, M. From TRMM to GPM: How Reliable Are Satellite-Based Precipitation Data across Nigeria? Remote Sens. 2020, 12, 3964. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Li, L.; Wang, J.; Qi, W.; Xu, C.; Kim, J. Evaluation of Multi-Satellite Precipitation Datasets and Their Error Propagation in Hydrological Modeling in a Monsoon-Prone Region. Remote Sens. 2020, 12, 3550. [Google Scholar] [CrossRef]
- Ehsan Bhuiyan, M.A.; Nikolopoulos, E.I.; Anagnostou, E.N.; Polcher, J.; Albergel, C.; Dutra, E.; Fink, G.; Martínez-de La Torre, A.; Munier, S. Assessment of precipitation error propagation in multi-model global water resource reanalysis. Hydrol. Earth Syst. Sci. 2019, 23, 1973–1994. [Google Scholar] [CrossRef] [Green Version]
- Falck, A.S.; Maggioni, V.; Tomasella, J.; Vila, D.A.; Diniz, F.L.R. Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins–Araguaia basin in Brazil. J. Hydrol. 2015, 527, 943–957. [Google Scholar] [CrossRef]
- Zhu, D.; Peng, D.Z.; Cluckie, I.D. Statistical analysis of error propagation from radar rainfall to hydrological models. Hydrol. Earth Syst. Sci. 2013, 17, 1445–1453. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Li, H.; Wood, E. Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour. Res. 2010, 46, W09535. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, M.; Brandimarte, L.; Amaranto, A. Evaluating precipitation datasets for large-scale distributed hydrological modelling. J. Hydrol. 2019, 578, 124076. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Bierkens, M.F.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.; Sivapalan, M. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Michaud, J.D.; Sorooshian, S. Effect of rainfall-sampling errors on simulations of desert flash floods. Water Resour. Res. 1994, 30, 2765–2775. [Google Scholar] [CrossRef]
- Mandapaka, P.V.; Krajewski, W.F.; Ciach, G.J.; Villarini, G.; Smith, J.A. Estimation of radar-rainfall error spatial correlation. Adv. Water Resour. 2009, 32, 1020–1030. [Google Scholar] [CrossRef]
- Nijssen, B.; Lettenmaier, D. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. J. Geophys. Res. Atmos. 2004, 109, D02103. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Anagnostou, E.N.; Hossain, F.; Gebremichael, M.; Borga, M. Understanding the Scale Relationships of Uncertainty Propagation of Satellite Rainfall through a Distributed Hydrologic Model. J. Hydrometeorol. 2010, 11, 520–532. [Google Scholar] [CrossRef]
- Wright, D.B.; Smith, J.A.; Baeck, M.L. Critical examination of area reduction factors. J. Hydrol. Eng. 2014, 19, 769–776. [Google Scholar] [CrossRef]
- Biondi, D.; Greco, A.; De Luca, D.L. Fixed-area vs storm-centered areal reduction factors: A Mediterranean case study. J. Hydrol. 2021, 595, 125654. [Google Scholar] [CrossRef]
- Greco, A.; De Luca, D.L.; Avolio, E. Heavy Precipitation Systems in Calabria Region (Southern Italy): High-Resolution Ob-served Rainfall and Large-Scale Atmospheric Pattern Analysis. Water 2020, 12, 1468. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Structures of atmospheric precipitation systems—A global survey. Radio Sci. 1981, 16, 671–689. [Google Scholar] [CrossRef]
- Willems, P. A spatial rainfall generator for small spatial scales. J. Hydrol. 2001, 252, 126–144. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J.; Xu, Y. Establishment and assessment of the grid precipitation datasets in China for recent 50 years. J. Meteor. Sci. 2014, 34, 414–420. (In Chinese) [Google Scholar]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Chen, S.; Ndayisaba, F. Evaluation of PERSIANN-CDR for Meteorological Drought Monitoring over China. Remote Sens. 2016, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Zhong, R.; Wang, Z.; Wu, X.; Chen, X.; Wang, P.; Lian, Y. Monitoring hydrological drought using long-term satellite-based precipitation data. Sci. Total Environ. 2019, 649, 1198–1208. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Yang, H.; Sweetapple, C. An ensemble-based dynamic Bayesian averaging approach for discharge simulations using multiple global precipitation products and hydrological models. J. Hydrol. 2018, 558, 405–420. [Google Scholar] [CrossRef]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Braithwaite, D.; Updegraff, G.; Hsu, K.; et al. The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor. 2004, 43, 1834–1852. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Nguyen, P.; Naeini, M.R.; Hsu, K.; Braithwaite, D.; Sorooshian, S. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Sci. Data 2021, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Ombadi, M.; Gorooh, V.A.; Shearer, E.J.; Sadeghi, M.; Sorooshian, S.; Hsu, K.; Bolvin, D.; Ralph, M.F. PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A Near real-Time, Quasi-Global Satellite Precipitation Dataset. J. Hydrometeorol. 2020, 21, 2893–2906. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Shearer, E.J.; Ombadi, M.; Gorooh, V.A.; Hsu, K.; Sorooshian, S.; Logan, W.S.; Ralph, M. PERSIANN Dynamic Infrared–Rain Rate Model (PDIR) for High-Resolution, Real-Time Satellite Precipitation Estimation. Bull. Am. Meteorol. Soc. 2020, 101, E286–E302. [Google Scholar] [CrossRef]
- Xie, P.P.; Joyce, R.; Wu, S.R.; Yoo, S.-H.; Yarosh, Y.; Sun, F.Y.; Lin, R. NOAA CDR Program (2019): NOAA Climate Data Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation Estimates, Version 1; NOAA National Centers for Environmental Information: College Park, MD, USA, 2019. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00948 (accessed on 22 December 2020). [CrossRef]
- Xu, C.; Wang, J.; Li, Q. A new method for temperature spatial interpolation based on sparse historical stations. J. Clim. 2018, 31, 1757–1770. [Google Scholar] [CrossRef]
- Shepard, D.S. Computer Mapping: The SYMAP Interpolation Algorithm; Springer: Berlin/Heidelberg, Germany, 1984; pp. 133–145. [Google Scholar]
- Xia, J. Identification of a constrained nonlinear hydrological system described by Volterra Functional Series. Water Resour. Res. 1991, 27, 2415–2420. [Google Scholar] [CrossRef]
- Xia, J.; Wang, G.; Tan, G.; Ye, A.; Huang, G.H. Development of distributed time-variant gain model for nonlinear hydrological systems. Sci. China Ser. D Earth Sci. 2005, 48, 713–723. [Google Scholar] [CrossRef]
- Ye, A.; Duan, Q.; Zheng, H.; Li, L.; Wang, C. A Distributed Time-Variant Gain Hydrological Model Based on Remote Sensing. J. Resour. Ecol. 2010, 3, 222–230. [Google Scholar] [CrossRef]
- Du, C.; Ye, A.; Gan, Y.; You, J.; Duan, Q.; Ma, F.; Hou, J. Drainage network extraction from a high-resolution DEM using parallel programming in the NET Framework. J. Hydrol. 2017, 555, 506–517. [Google Scholar] [CrossRef]
- Ye, A.; Duan, Q.; Zhan, C.; Liu, Z.; Mao, Y. Improving kinematic wave routing scheme in Community Land Model. Hydrol Res. 2013, 44, 886–903. [Google Scholar] [CrossRef] [Green Version]
- Ye, A.; Zhou, Z.; You, J.; Ma, F.; Duan, Q. Dynamic Manning’s roughness coefficients for hydrological modelling in basins. Hydrol Res. 2018, 49, 1379–1395. [Google Scholar] [CrossRef]
- Bormann, K.J.; Evans, J.P.; McCabe, M.F. Constraining snowmelt in a temperature-index model using simulated snow densities. J. Hydrol. 2014, 517, 652–667. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Camici, S.; Massari, C.; Ciabatta, L.; Marchesini, I.; and Brocca, L. Which rainfall score is more informative about the per-formance in river discharge simulation? A comprehensive assessment on 1318 basins over Europe. Hydrol. Earth Syst. Sci. 2020, 24, 4869–4885. [Google Scholar] [CrossRef]
- Jiang, L.; Bauer-Gottwein, P. How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [Google Scholar] [CrossRef]
- Terink, W.; Leijnse, H.; van den Eertwegh, G.; Uijlenhoet, R. Spatial resolutions in areal rainfall estimation and their impact on hydrological simulations of a lowland catchment. J. Hydrol. 2018, 563, 319–335. [Google Scholar] [CrossRef]
- Vergara, H.; Hong, Y.; Gourley, J.J.; Anagnostou, E.N.; Maggioni, V.; Stampoulis, D.; Kirstetter, P. Effects of Resolution of Satellite-Based Rainfall Estimates on Hydrologic Modeling Skill at Different Scales. J. Hydrometeorol. 2014, 15, 593–613. [Google Scholar] [CrossRef] [Green Version]
- Cunha, L.K.; Mandapaka, P.V.; Krajewski, W.F.; Mantilla, R.; Bradley, A.A. Impact of radar-rainfall error structure on estimated flood magnitude across scales: An investigation based on a parsimonious distributed hydrological model. Water Resour. Res. 2012, 48, W10515. [Google Scholar] [CrossRef]
- Sampson, A.A.; Wright, D.B.; Stewart, R.D.; LoBue, A. The Role of Rainfall Temporal and Spatial Averaging in Seasonal Simulations of the Terrestrial Water Balance. Hydrol. Process. 2020, 34, 2531–2542. [Google Scholar] [CrossRef]
- Huang, Y.; Bárdossy, A.; Zhang, K. Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data. Hydrol. Earth Syst. Sci. 2019, 23, 2647–2663. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, S.; He, R.; Wang, G.; Tan, M.L.; Yang, X.; Zheng, Z. Impact of temporal rainfall resolution on daily streamflow simulations in a large-sized river basin. Hydrol. Sci. J. 2020, 65, 2630–2645. [Google Scholar] [CrossRef]
- Lobligeois, F.; Andréassian, V.; Perrin, C.; Tabary, P.; Loumagne, C. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrol. Earth Syst. Sci. 2014, 18, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Demaria, E.M.; Nijssen, B.; Valdés, J.B.; Rodriguez, D.A.; Su, F. Satellite precipitation in southeastern South America: How do sampling errors impact high flow simulations? Int. J. River Basin Manag. 2014, 12, 1–13. [Google Scholar] [CrossRef]
- Bruni, G.; Reinoso, R.; van de Giesen, N.C.; Clemens, F.H.L.R.; Ten Veldhuis, J.A.E. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2015, 19, 691–709. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Wang, H.; Jia, P.; Tang, G.; Wang, D.; Ma, Z.; Yan, H. Application of the GPM-IMERG Products in Flash Flood Warning: A Case Study in Yunnan, China. Remote Sens. 2020, 12, 1954. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
Category | Product | Availability Period | Spatial Coverage | Temporal Resolution | Spatial Resolution | Time Delay | Bias Correction |
---|---|---|---|---|---|---|---|
Near real-time without bias correction | PERSIANN | March 2000 –present | 60S–60N | 1 h | 0.25 | 2 days | - |
PCCS | January 2003 –present | 60S–60N | 1 h | 0.04 | 1 h | - | |
PDIR | March 2000 –present | 60S–60N | 1 h | 0.04 | 15–60 min | - | |
Near real-time with bias correction | CMORPH | January 1998 –present | 60S–60N | 30 min | 0.25 | 3–4 months | CPC GPCP |
IMERG | June 2000 –present | 60S–60N | 30 min | 0.1 | 3.5 months | GPCC | |
GSMaP | April 2000 –present | 60S–60N | 1 h | 0.1 | 4 h | CPC | |
Climate data record | PCDR | January 1983 –present | 60S–60N | 1 day | 0.25 | 3 months | GPCP |
PCCSCDR | January 1983 –present | 60S–60N | 3 h | 0.04 | 3 months | GPCP |
Metrics | Formula | Interval | Optimum |
---|---|---|---|
R | [−1, 1] | 1 | |
NSE | [−∞, 1] | 1 | |
KGE | [−∞, 1] | 1 | |
RB | [−∞, +∞] | 0 | |
NCRMSE | [0, +∞] | 0 |
Station (Catchment Size) | Metric | Without Bias Correction | With Bias Correction | Climate Data Record | |||||
---|---|---|---|---|---|---|---|---|---|
PERSIANN | PCCS | PDIR | CMORPH | IMERG | GSMaP | PCDR | PCCSCDR | ||
TZL (~127.2 km2) | R | 0.520 | 0.377 | 0.899 | 0.962 | 0.969 | 0.920 | 0.916 | 0.875 |
NSE | −0.816 | −3.165 | 0.600 | 0.924 | 0.924 | 0.160 | 0.394 | −0.162 | |
KGE | 0.271 | −0.359 | 0.764 | 0.961 | 0.902 | 0.567 | 0.636 | 0.486 | |
RB (%) | 53.98 | 118.56 | 15.77 | −0.07 | −9.30 | 38.37 | 33.99 | 47.78 | |
NCRMSE | 0.810 | 0.758 | 0.457 | 0.278 | 0.284 | 0.484 | 0.453 | 0.536 | |
YJ (~66.5 km2) | R | 0.240 | 0.084 | 0.820 | 0.928 | 0.915 | 0.892 | 0.834 | 0.774 |
NSE | −8.638 | −23.127 | 0.490 | 0.799 | 0.818 | 0.199 | −0.425 | −1.921 | |
KGE | −0.766 | −2.264 | 0.762 | 0.789 | 0.848 | 0.604 | 0.440 | 0.151 | |
RB (%) | 159.32 | 313.12 | 11.31 | 19.31 | −12.58 | 31.95 | 50.94 | 79.6 | |
NCRMSE | 0.841 | 0.769 | 0.570 | 0.507 | 0.463 | 0.513 | 0.588 | 0.658 | |
GZ (~32.6 km2) | R | 0.088 | −0.021 | 0.73 | 0.837 | 0.876 | 0.828 | 0.762 | 0.667 |
NSE | −27.205 | −76.389 | 0.276 | 0.586 | 0.741 | 0.524 | −0.863 | −3.589 | |
KGE | −1.753 | −4.226 | 0.687 | 0.664 | 0.787 | 0.711 | 0.411 | 0.044 | |
RB (%) | 258.41 | 512.43 | 8.28 | −29.4 | −13.88 | −21.0 | 46.85 | 81.75 | |
NCRMSE | 0.863 | 0.798 | 0.687 | 0.74 | 0.508 | 0.562 | 0.662 | 0.747 | |
DF (~14.2 km2) | R | 0.224 | 0.06 | 0.795 | 0.929 | 0.925 | 0.909 | 0.86 | 0.768 |
NSE | −9.431 | −25.353 | 0.32 | 0.835 | 0.841 | 0.151 | −0.47 | −2.404 | |
KGE | −0.663 | −2.127 | 0.703 | 0.847 | 0.867 | 0.583 | 0.42 | 0.12 | |
RB (%) | 146.16 | 298.19 | 17.79 | −12.56 | −11 | 32.83 | 53.89 | 81.3 | |
NCRMSE | 0.863 | 0.783 | 0.601 | 0.454 | 0.42 | 0.503 | 0.563 | 0.668 |
FAA | Metric | Without Bias Correction | With Bias Correction | Climate Data Record | |||||
---|---|---|---|---|---|---|---|---|---|
PERSIANN | PCCS | PDIR | CMORPH | IMERG | GSMaP | PCDR | PCCSCDR | ||
0–20 (103 km2) | R | 0.43 | 0.298 | 0.639 | 0.731 | 0.769 | 0.716 | 0.691 | 0.552 |
NSE | −1.646 | −3.902 | −0.29 | 0.334 | 0.47 | −0.579 | −0.726 | −3.12 | |
KGE | 0.218 | −0.126 | 0.486 | 0.596 | 0.671 | 0.392 | 0.41 | 0.087 | |
RB (%) | 56.8 | 91.9 | 15.8 | −11.8 | −12.0 | 37.6 | 40.8 | 63.8 | |
NCRMSE | 0.9 | 0.887 | 0.78 | 0.784 | 0.734 | 0.709 | 0.72 | 0.826 | |
20–60 (103 km2) | R | 0.093 | −0.003 | 0.733 | 0.839 | 0.876 | 0.83 | 0.763 | 0.67 |
NSE | −26.087 | −73.171 | 0.281 | 0.593 | 0.742 | 0.469 | −0.814 | −3.543 | |
KGE | −1.709 | −4.142 | 0.689 | 0.669 | 0.79 | 0.695 | 0.41 | 0.048 | |
RB (%) | 254.0 | 503.9 | 8.3 | −28.9 | −13.6 | 1.1 | 47.2 | 80.8 | |
NCRMSE | 0.861 | 0.796 | 0.683 | 0.733 | 0.507 | 0.558 | 0.662 | 0.745 | |
60–100 (103 km2) | R | 0.326 | 0.164 | 0.863 | 0.948 | 0.931 | 0.911 | 0.86 | 0.815 |
NSE | −4.351 | −12.131 | 0.658 | 0.823 | 0.824 | 0.27 | 0.059 | −0.913 | |
KGE | −0.309 | −1.42 | 0.829 | 0.792 | 0.819 | 0.608 | 0.561 | 0.315 | |
RB (%) | 112.2 | 226.5 | 6.8 | −19.0 | −16.4 | 33.1 | 39.5 | 64.3 | |
NCRMSE | 0.838 | 0.768 | 0.504 | 0.476 | 0.463 | 0.484 | 0.541 | 0.609 | |
100–130 (103 km2) | R | 0.469 | 0.319 | 0.891 | 0.959 | 0.96 | 0.918 | 0.901 | 0.865 |
NSE | −1.38 | −4.552 | 0.648 | 0.906 | 0.884 | 0.21 | 0.318 | −0.239 | |
KGE | 0.14 | −0.588 | 0.8 | 0.901 | 0.853 | 0.583 | 0.617 | 0.46 | |
RB (%) | 67.0 | 141.7 | 11.4 | −8.0 | −13.7 | 36.6 | 35.6 | 50.6 | |
NCRMSE | 0.819 | 0.76 | 0.462 | 0.334 | 0.364 | 0.483 | 0.478 | 0.548 | |
YLJ median (~365 km2) | R | 0.398 | 0.268 | 0.652 | 0.746 | 0.786 | 0.726 | 0.704 | 0.568 |
NSE | −2.35 | −5.358 | −0.208 | 0.366 | 0.505 | −0.452 | −0.692 | −2.998 | |
KGE | 0.094 | −0.583 | 0.506 | 0.615 | 0.683 | 0.416 | 0.424 | 0.094 | |
RB (%) | 70.8 | 139.8 | 13.4 | −13.1 | −13.0 | 36.3 | 40.4 | 64.9 | |
NCRMSE | 0.885 | 0.877 | 0.771 | 0.750 | 0.688 | 0.702 | 0.710 | 0.818 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ye, A.; Nguyen, P.; Analui, B.; Sorooshian, S.; Hsu, K. Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling. Remote Sens. 2021, 13, 3061. https://doi.org/10.3390/rs13163061
Zhang Y, Ye A, Nguyen P, Analui B, Sorooshian S, Hsu K. Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling. Remote Sensing. 2021; 13(16):3061. https://doi.org/10.3390/rs13163061
Chicago/Turabian StyleZhang, Yuhang, Aizhong Ye, Phu Nguyen, Bita Analui, Soroosh Sorooshian, and Kuolin Hsu. 2021. "Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling" Remote Sensing 13, no. 16: 3061. https://doi.org/10.3390/rs13163061
APA StyleZhang, Y., Ye, A., Nguyen, P., Analui, B., Sorooshian, S., & Hsu, K. (2021). Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling. Remote Sensing, 13(16), 3061. https://doi.org/10.3390/rs13163061