Quantifying Effects of Excess Water Stress at Early Soybean Growth Stages Using Unmanned Aerial Systems
Abstract
:1. Introduction
2. Methods
2.1. Site Description and Data Acquisition
2.2. UAS Data Processing Pipeline
2.3. Estimating Above-Ground Biomass and Percent of Expected Yield
2.4. Identifying Areas of Water Accumulation Using Topographic Wetness Index
3. Results
3.1. Above-Ground Biomass Prediction
3.2. Sensitivity of Above-Ground Biomass to Water Stress
3.3. Quantifying the Impacts of Excess Water Stress on Yield
4. Discussion
4.1. UAS Data Processing Pipeline
4.2. Predicting Above-Ground Biomass
4.3. Quantifying Impacts of Excess Water Stress on Yield
5. Conclusions
- Proximal remote sensing from UASs is a representative predictor of biomass at the R4–R5 stage at the plot scale. Expanding the methodology developed from Jackson et al. [37] and Chan et al. [40] for the estimation of VWC to estimate biomass proved to be representative and transferable. Soybean of varying classes (HY, HYD and DA) was analyzed and a representative estimate of biomass for all genetic lines was generated.
- Estimated biomass at early growth stages (R4–R5) proved to be sensitive to excess water stress, though it was less sensitive than the in-situ biomass. The sensitivity of estimated biomass to excess water stress was analyzed and evaluated at the plot and field scale. The sensitivity of estimated biomass sensitivity to excess water stress was distinguishable in the early growth stages. Concentrated areas of low estimates of biomass showed agreement with mapped ILA and areas of high TWI.
- Low estimates of the percent of expected yield corresponded with observations of in-field flooding and areas with high TWI, whereas high estimates of the percent of expected yield corresponded with areas less susceptible to inundation. Estimates of potential yield reduction mapped with developed tools provide a useful crop status assessment at the R4–R5 stage.
Author Contributions
Funding
Conflicts of Interest
References
- Pack, D.J. About $300 Million in INDIANA Crops’ Value Lost to Flooding So Far; Purdue Extension: West Lafayette, IN, USA, 2015; Available online: https://extension.purdue.edu/Parke/pages/article.aspx?intItemID=10734 (accessed on 16 May 2018).
- DeBoer, D.W.; Ritter, W.F. Flood Damage to Crops in Depression Areas of North-Central Iowa. Trans. ASAE 1970, 13, 0547–0549. [Google Scholar] [CrossRef]
- Evans, R.O.; Fausey, N.R. Effects of Inadequate Drainage on Crop Growth and Yield. Agron. Monogr. Agron. 2015, 13–54. [Google Scholar] [CrossRef]
- Desmond, E.D.; Barkle, G.F.; Schwab, G.O. Soybean yield response to excess water. Am. Soc. Agric. Eng. (Microfiche Collect.) (USA) 1985, 1–12. [Google Scholar]
- Gao, F.; Anderson, M.; Daughtry, C.; Johnson, D. Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery. Remote Sens. 2018, 10, 1489. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, C.L.; Richardson, A.J.; Jackson, R.D.; Pinter, P.J.; Aase, J.K.; Smika, D.E.; Lautenschlager, L.F.; McMurtrey, J. Development of agrometeorological crop model inputs from remotely sensed information. IEEE Trans. Geosci. Remote Sens. 1986, 90–98. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Iowa State University. How a Soybean Plant Develops. 1985. Available online: http://publications.iowa.gov/14855/ (accessed on 2 May 2018).
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of Development Descriptions for Soybeans, Glycine max (L.) Merrill 1. Crop. Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Griffin, J.L.; Saxton, A.M. Response of Solid-Seeded Soybean to Flood Irrigation. II. Flood Duration. Agron. J. 1988, 80, 885–888. [Google Scholar] [CrossRef]
- Enquist, B.J. Global Allocation Rules for Patterns of Biomass Partitioning in Seed Plants. Science 2002, 295, 1517–1520. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J.; Enquist, B.J. Canonical rules for plant organ biomass partitioning and annual allocation. Am. J. Bot. 2002, 89, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Li, L.; Yilmaz, M.T.; Jackson, T.J. Comparison of vegetation water contents derived from shortwave-infrared and passive-microwave sensors over central Iowa. Remote Sens. Environ. 2011, 115, 2376–2383. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.; Ortiz-Monasterio, J.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2003, 94, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D. The use of satellite data for crop yield gap analysis. Field Crop. Res. 2013, 143, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Cherkauer, K.; Bowling, L. Corn Response to Climate Stress Detected with Satellite-Based NDVI Time Series. Remote Sens. 2016, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.; Morrison, M.J. Early Prediction of Soybean Yield from Canopy Reflectance Measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Hunt, E.R.; Jackson, T.J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ. 2008, 112, 2514–2522. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Widhalm, M.; Hamlet AByun, K.; Robeson, S.; Baldwin, M.; Staten, P.; Chiu, C.; Coleman, J.; Hall, E.; Hoogewind, K.; Huber, M.; et al. Indiana’s Past & Future Climate: A Report from the Indiana Climate Change Impacts Assessment; Purdue Climate Change Research Center, Purdue University: West Lafayette, IN, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Alberto, B.; District, S.P.; Banitt, A.; Faber, B. Red River of the North at Fargo, North Dakota, Pilot Study, Impact of Climate Change on Flood Frequency Curve. 2015. Available online: https://usace.contentdm.oclc.org/utils/getfile/collection/p266001coll1/id/6725 (accessed on 1 May 2018).
- Farm Production and Conservation Business Center. Report: Farmers Prevented from Planting Crops on More than 19 Million Acres; U.S. Department of Agriculture Farm Service Agency: Washington, DC, USA, 2019. Available online: https://www.fsa.usda.gov/news-room/news-releases/2019/report-farmers-prevented-from-planting-crops-on-more-than-19-million-acres (accessed on 12 August 2019).
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 20 March 2018).
- Song, Q.; Yan, L.; Quigley, C.; Jordan, B.D.; Fickus, E.; Schroeder, S.; Song, B.; An, Y.C.; Hyten, D.; Nelson, R.; et al. Genetic Characterization of the Soybean Nested Association Mapping Population. Plant. Genome 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Lyu, B.; Smith, S.D.; Xue, Y.; Rainey, K.M.; Cherkauer, K. An Efficient Pipeline for Crop Image Extraction and Vegetation Index Derivation Using Unmanned Aerial Systems. Trans. ASABE 2020, 63, 1133–1146. [Google Scholar] [CrossRef]
- Hearst, A.A.; Cherkauer, K.A. Research Article: Extraction of Small Spatial Plots from Geo-Registered UAS Imagery of Crop Fields. Environ. Pract. 2015, 17, 178–187. [Google Scholar] [CrossRef]
- Pix4D; Pix4D SA: Lausanne, Switzerland, 2018; Available online: https://www.pix4d.com/ (accessed on 6 July 2021).
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Pattey, E.; Miller, J.R.; McNairn, H.; Smith, A.; Hu, B. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens. Environ. 2010, 114, 1167–1177. [Google Scholar] [CrossRef]
- Gao, B.-C.; Goetzt, A.F. Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data. Remote Sens. Environ. 1995, 52, 155–162. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar] [CrossRef]
- Jackson, T.; Le Vine, D.; Hsu, A.; Oldak, A.; Starks, P.; Swift, C.; Isham, J.; Haken, M. Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2136–2151. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.; Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 1991, 36, 203–212. [Google Scholar] [CrossRef]
- Lawrence, H.; Wigneron, J.-P.; Richaume, P.; Novello, N.; Grant, J.; Mialon, A.; Al Bitar, A.; Merlin, O.; Guyon, D.; Leroux, D.; et al. Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA. Remote Sens. Environ. 2014, 140, 396–406. [Google Scholar] [CrossRef]
- Chan, S.; Bindlish, R.; Hunt, R.; Jackson, T.; Kimball, J. Ancillary Data Report: Vegetation Water Content. No. SMAP Science Document 047. 2013; pp. 1–15. Available online: Smap.jpl.nasa.gov (accessed on 3 March 2018).
- Zhang, J.; Xu, Y.; Yao, F.; Wang, P.; Guo, W.; Li, L.; Yang, L. Advances in estimation methods of vegetation water content based on optical remote sensing techniques. Sci. China Ser. E Technol. Sci. 2010, 53, 1159–1167. [Google Scholar] [CrossRef]
- Quinn, P.F.; Beven, K.J.; Lamb, R. The ln(a/tan Beta) Index: How to Use It Within the TOPMODEL Framework. Hydrol. Process. 1995, 9, 161–182. [Google Scholar] [CrossRef]
- Grimm, K.; Nasab, M.T.; Chu, X. TWI Computations and Topographic Analysis of Depression-Dominated Surfaces. Water 2018, 10, 663. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.; Neely, H.L.; et al. Data from: Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PLoS ONE 2016, 11, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, J.; Yang, G.; Liu, J.; Cao, J.; Li, C.; Zhao, X.; Gai, J. Establishment of Plot-Yield Prediction Models in Soybean Breeding Programs Using UAV-Based Hyperspectral Remote Sensing. Remote Sens. 2019, 11, 2752. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Di, L.; Yu, E.; Lin, L.; Zhang, C.; Tang, J. Rapid Flood Progress Monitoring in Cropland with NASA SMAP. Remote Sens. 2019, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.F.; Cai, Y.; Peng, B.; Yang, W.H.; Guan, K.; DeLucia, E.H. Spatiotemporal Derivation of Intermittent Ponding in a Maize–Soybean Landscape from Planet Labs CubeSat Images. Remote Sens. 2020, 12, 1942. [Google Scholar] [CrossRef]
- Scott, H.D.; DeAngulo, J.; Daniels, M.B.; Wood, L.S. Flood Duration Effects on Soybean Growth and Yield. Agron. J. 1989, 81, 631–636. [Google Scholar] [CrossRef]
Type and Number of Plots | Parameter a | Parameter b | Parameter c | PBIAS (%) | RMSE (g/m2) |
---|---|---|---|---|---|
RUE-1 | |||||
HY 191 plots | 1817.06 | −1022.2 | 226.9 | 0.8 | 73 |
HYD 48 plots | 2382.77 | −1863.25 | 497.97 | <0.1 | 64 |
DA 144 plots | 1993.46 | −1267.85 | 308.15 | <0.1 | 70 |
All classes 383 plots | 1955.75 | −1217.37 | 290.23 | 0.8 | 72 |
HY—constant stem factor 191 plots | 464.06 | 761.75 | −372.22 | −0.6 | 75 |
HYD—constant stem factor 48 plots | 2379.15 | −1856.73 | 493 | −0.5 | 63 |
DA—constant stem factor 144 plots | 1993.16 | −1264.52 | 305 | −0.5 | 70 |
All classes—constant stem factor 383 plots | 1955.75 | −1217.37 | 286.73 | −0.5 | 71 |
RUE-2 | |||||
HY 190 plots | 1817.06 | −1022.2 | 226.9 | 16.6 | 82 |
HYD 48 plots | 2382.77 | −1863.25 | 497.97 | 10.2 | 65 |
DA 139 plots | 1993.46 | −1267.85 | 308.15 | 11.5 | 72 |
All classes 377 plots | 1955.75 | −1217.37 | 290.23 | 14.4 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, S.D.; Bowling, L.C.; Rainey, K.M.; Cherkauer, K.A. Quantifying Effects of Excess Water Stress at Early Soybean Growth Stages Using Unmanned Aerial Systems. Remote Sens. 2021, 13, 2911. https://doi.org/10.3390/rs13152911
Smith SD, Bowling LC, Rainey KM, Cherkauer KA. Quantifying Effects of Excess Water Stress at Early Soybean Growth Stages Using Unmanned Aerial Systems. Remote Sensing. 2021; 13(15):2911. https://doi.org/10.3390/rs13152911
Chicago/Turabian StyleSmith, Stuart D., Laura C. Bowling, Katy M. Rainey, and Keith A. Cherkauer. 2021. "Quantifying Effects of Excess Water Stress at Early Soybean Growth Stages Using Unmanned Aerial Systems" Remote Sensing 13, no. 15: 2911. https://doi.org/10.3390/rs13152911
APA StyleSmith, S. D., Bowling, L. C., Rainey, K. M., & Cherkauer, K. A. (2021). Quantifying Effects of Excess Water Stress at Early Soybean Growth Stages Using Unmanned Aerial Systems. Remote Sensing, 13(15), 2911. https://doi.org/10.3390/rs13152911