Seismic Ambient Noise Imaging of a Quasi-Amagmatic Ultra-Slow Spreading Ridge
Abstract
:1. Study Area and Motivation
2. Ambient Noise Interferometry
3. Measurement of Ambient-Noise Data
4. Data Analysis
4.1. Probability Density Function (PDF)
4.2. Cross-Correlation
4.3. Amplitude Ratio
4.4. Phase Velocity Determination
5. Inversion of Phase-Velocity Dispersion Curves
6. Results and Discussion
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sauter, D.; Cannat, M. The ultraslow spreading Southwest Indian ridge. Divers. Hydrotherm. Syst. Slow Spreading Ocean Ridges 2010, 88, 153–173. [Google Scholar]
- Cannat, M.; Rommevaux-Jestin, C.; Sauter, D.; Deplus, C.; Mendel, V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49 to 69 E). J. Geophys. Res. Solid Earth 1999, 104, 22825–22843. [Google Scholar] [CrossRef]
- Sauter, D.; Carton, H.; Mendel, V.; Munschy, M.; Rommevaux-Jestin, C.; Schott, J.J.; Whitechurch, H. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50 30′ E, 55 30′ E and 66 20′ E): Implications for magmatic processes at ultraslow-spreading centers. Geochem. Geophys. Geosyst. 2004, 5. [Google Scholar] [CrossRef]
- Carbotte, S.M.; Smith, D.K.; Cannat, M.; Klein, E.M. Tectonic and magmatic segmentation of the Global Ocean Ridge System: A synthesis of observations. Geol. Soc. Lond. Spec. Publ. 2016, 420, 249–295. [Google Scholar] [CrossRef]
- Dick, H.J.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef]
- Momoh, E.; Cannat, M.; Leroy, S. Internal Structure of the Oceanic Lithosphere at a Melt-Starved Ultraslow-Spreading Mid-Ocean Ridge: Insights From 2-D Seismic Data. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008540. [Google Scholar] [CrossRef]
- Cannat, M.; Sauter, D.; Mendel, V.; Ruellan, E.; Okino, K.; Escartin, J.; Combier, V.; Baala, M. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 2006, 34, 605–608. [Google Scholar] [CrossRef]
- Sauter, D.; Cannat, M.; Rouméjon, S.; Andreani, M.; Birot, D.; Bronner, A.; Brunelli, D.; Carlut, J.; Delacour, A.; Guyader, V.; et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci. 2013, 6, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Qiu, X.; Li, J.; Sauter, D.; Ruan, A.; Chen, J.; Cannat, M.; Singh, S.; Zhang, J.; Wu, Z.; et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′ E). Geochem. Geophys. Geosyst. 2013, 14, 4544–4563. [Google Scholar] [CrossRef] [Green Version]
- Cannat, M.; Rommevaux-Jestin, C.; Fujimoto, H. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Tucholke, B.E.; Lin, J.; Kleinrock, M.C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J. Geophys. Res. Solid Earth 1998, 103, 9857–9866. [Google Scholar] [CrossRef] [Green Version]
- Momoh, E.; Cannat, M.; Watremez, L.; Leroy, S.; Singh, S.C. Quasi-3-D Seismic Reflection Imaging and Wide-Angle Velocity Structure of Nearly Amagmatic Oceanic Lithosphere at the Ultraslow-Spreading Southwest Indian Ridge. J. Geophys. Res. Solid Earth 2017, 122, 9511–9533. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.K.; Cann, J.R.; Escartín, J. Widespread active detachment faulting and core complex formation near 13 N on the Mid-Atlantic Ridge. Nature 2006, 442, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Standish, J.J.; Dick, H.J.; Michael, P.J.; Melson, W.G.; O’Hearn, T. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25 E): Major element chemistry and the importance of process versus source. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Sauter, D.; Cannat, M.; Mendel, V. Magnetization of 0–26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61–67 E. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Minshull, T.; Muller, M.; White, R. Crustal structure of the Southwest Indian Ridge at 66 E: Seismic constraints. Geophys. J. Int. 2006, 166, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.; Gordon, R.G. Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge. Nature 1999, 398, 64–67. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 1950, 243, 1–35. [Google Scholar]
- Hasselmann, K. A statistical analysis of the generation of microseisms. Rev. Geophys. 1963, 1, 177–210. [Google Scholar] [CrossRef]
- Friedrich, A.; Krueger, F.; Klinge, K. Ocean-generated microseismic noise located with the Gräfenberg array. J. Seismol. 1998, 2, 47–64. [Google Scholar] [CrossRef]
- Campillo, M.; Paul, A. Long-range correlations in the diffuse seismic coda. Science 2003, 299, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, N.M.; Campillo, M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Boschi, L.; Weemstra, C. Stationary-phase integrals in the cross correlation of ambient noise. Rev. Geophys. 2015, 53, 411–451. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.C.; Ritzwoller, M.H.; Townend, J.; Bannister, S.; Savage, M.K. Ambient noise Rayleigh wave tomography of New Zealand. Geophys. J. Int. 2007, 170, 649–666. [Google Scholar] [CrossRef] [Green Version]
- Moschetti, M.; Ritzwoller, M.; Shapiro, N. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, X.; Song, X.; Yang, Y.; Ritzwoller, M.H. Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ritzwoller, M.H.; Levshin, A.L.; Shapiro, N.M. Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int. 2007, 168, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Harmon, N.; Forsyth, D.; Webb, S. Using ambient seismic noise to determine short-period phase velocities and shallow shear velocities in young oceanic lithosphere. Bull. Seismol. Soc. Am. 2007, 97, 2009–2023. [Google Scholar] [CrossRef]
- Yao, H.; Gouedard, P.; Collins, J.A.; McGuire, J.J.; van der Hilst, R.D. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental-and higher-mode Scholte-Rayleigh waves. C. R. Geosci. 2011, 343, 571–583. [Google Scholar] [CrossRef]
- Bohlen, T.; Kugler, S.; Klein, G.; Theilen, F. 1.5 D inversion of lateral variation of Scholte-wave dispersion. Geophysics 2004, 69, 330–344. [Google Scholar] [CrossRef]
- Leroy, S.; Cannat, M. MD 199/SISMO-SMOOTH Cruise, Marion Dufresne R/V. Fr. Oceanogr. Cruises 2014. [Google Scholar] [CrossRef]
- Leroy, S.; Cannat, M.; Momoh, E.I.; Singh, S.C.; Watremez, L.; Sauter, D.; Autin, J.; Louden, K.E.; Nedimovic, M.R.; Daniel, R.; et al. Seismic structure of an amagmatic section of the ultra-slow spreading South West Indian Ridge: The 2014 Sismosmooth cruise. AGUFM 2015, 2015, V21A–3027. [Google Scholar]
- McNamara, D.E.; Boaz, R. Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions: A Stand-Alone Software Package. Available online: https://pubs.er.usgs.gov/publication/ofr20051438 (accessed on 4 June 2021).
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Agius, M.R.; D’Amico, S.; Galea, P.; Panzera, F. Performance evaluation of Wied Dalam (WDD) seismic station in Malta. J. Malta Chamb. Sci. 2014, 2, 72–80. [Google Scholar]
- Mordret, A.; Landès, M.; Shapiro, N.; Singh, S.; Roux, P.; Barkved, O. Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophys. J. Int. 2013, 193, 1627–1643. [Google Scholar] [CrossRef]
- Seats, K.J.; Lawrence, J.F.; Prieto, G.A. Improved ambient noise correlation functions using Welch’ s method. Geophys. J. Int. 2012, 188, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Ekström, G. Love and Rayleigh phase-velocity maps, 5–40 s, of the western and central USA from USArray data. Earth Planet. Sci. Lett. 2014, 402, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Bensen, G.; Ritzwoller, M.; Barmin, M.; Levshin, A.; Lin, F.; Moschetti, M.; Shapiro, N.; Yang, Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 2007, 169, 1239–1260. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Bernardi, F.; Michelini, A. Surface wave dispersion measurements from ambient seismic noise analysis in Italy. Geophys. J. Int. 2010, 180, 1242–1252. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Aslam, K.; Langston, C.A. Directionality of ambient noise in the Mississippi embayment. Geophys. J. Int. 2020, 223, 1100–1117. [Google Scholar] [CrossRef]
- Boschi, L.; Weemstra, C.; Verbeke, J.; Ekström, G.; Zunino, A.; Giardini, D. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal. Geophys. J. Int. 2012, 192, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, N.M.; Campillo, M.; Stehly, L.; Ritzwoller, M.H. High-resolution surface-wave tomography from ambient seismic noise. Science 2005, 307, 1615–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehly, L.; Campillo, M.; Shapiro, N. A study of the seismic noise from its long-range correlation properties. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Stehly, L.; Fry, B.; Campillo, M.; Shapiro, N.; Guilbert, J.; Boschi, L.; Giardini, D. Tomography of the Alpine region from observations of seismic ambient noise. Geophys. J. Int. 2009, 178, 338–350. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.C.; Moschetti, M.P.; Ritzwoller, M.H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int. 2008, 173, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Ekström, G.; Abers, G.A.; Webb, S.C. Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Tromp, J.; Luo, Y.; Hanasoge, S.; Peter, D. Noise cross-correlation sensitivity kernels. Geophys. J. Int. 2010, 183, 791–819. [Google Scholar] [CrossRef] [Green Version]
- Kästle, E.D.; Soomro, R.; Weemstra, C.; Boschi, L.; Meier, T. Two-receiver measurements of phase velocity: Cross-validation of ambient-noise and earthquake-based observations. Geophys. J. Int. 2016, 207, 1493–1512. [Google Scholar] [CrossRef] [Green Version]
- Molinari, I.; Verbeke, J.; Boschi, L.; Kissling, E.; Morelli, A. Italian and Alpine three-dimensional crustal structure imaged by ambient-noise surface-wave dispersion. Geochem. Geophys. Geosyst. 2015, 16, 4405–4421. [Google Scholar] [CrossRef]
- Yao, H.; van Der Hilst, R.D.; De Hoop, M.V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int. 2006, 166, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Lacoss, R.T.; Kelly, E.J.; Toksöz, M.N. Estimation of seismic noise structure using arrays. Geophysics 1969, 34, 21–38. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, R.B. Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett. 2013, 84, 1081–1088. [Google Scholar] [CrossRef]
- Aki, K. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. 1957, 35, 415–456. [Google Scholar]
- Menke, W.; Jin, G. Waveform fitting of cross spectra to determine phase velocity using Aki’s formula. Bull. Seismol. Soc. Am. 2015, 105, 1619–1627. [Google Scholar] [CrossRef]
- Herrmann, R. Computer Program in Seismology, Vol IV; St Louis University: St. Louis, MO, USA, 1994. [Google Scholar]
- Nolet, G. Linearized inversion of (teleseismic) data. In The Solution of the Inverse Problem in Geophysical Interpretation; Springer: Boston, MA, USA, 1981; pp. 9–37. [Google Scholar]
- Tarantola, A. Inversion of travel times and seismic waveforms. In Seismic Tomography; Springer: Dordrecht, The Netherlands, 1987; pp. 135–157. [Google Scholar]
- Wathelet, M. Array Recordings of Ambient Vibrations: Surface-Wave Inversion. Ph.D. Thesis, Liége University, Liège, Belgium, 2005. Volume 161. [Google Scholar]
- Scales, J.A.; Tenorio, L. Prior information and uncertainty in inverse problems. Geophysics 2001, 66, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Mosegaard, K.; Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 1995, 100, 12431–12447. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Yao, H.; Beghein, C.; van der Hilst, R.D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis–II. Crustal and upper-mantle structure. Geophys. J. Int. 2009, 173, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.J.; Christensen, N.I. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane Transform Zone (MARK). In Proceedings-Ocean Drilling Program Scientific Results; National Science Foundation: Alexandria, VA, USA, 1997; pp. 437–456. [Google Scholar]
- Kandilarov, A.; Mjelde, R.; Okino, K.; Murai, Y. Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed amagmatic portion of oceanic crustal formation. Mar. Geophys. Res. 2008, 29, 109–134. [Google Scholar] [CrossRef]
- Hamada, G. Reservoir fluids identification using Vp/Vs ratio? Oil Gas Sci. Technol. 2004, 59, 649–654. [Google Scholar] [CrossRef]
- Rouméjon, S.; Cannat, M.; Agrinier, P.; Godard, M.; Andreani, M. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65E). J. Petrol. 2015, 56, 703–734. [Google Scholar] [CrossRef] [Green Version]
- Canales, J.P.; Collins, J.A.; Escartín, J.; Detrick, R.S. Seismic structure across the rift valley of the Mid-Atlantic Ridge at 23 20’(MARK area): Implications for crustal accretion processes at slow spreading ridges. J. Geophys. Res. Solid Earth 2000, 105, 28411–28425. [Google Scholar] [CrossRef]
- Minshull, T.A. Geophysical characterisation of the ocean–continent transition at magma-poor rifted margins. C. R. Geosci. 2009, 341, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Davy, R.; Minshull, T.; Bayrakci, G.; Bull, J.; Klaeschen, D.; Papenberg, C.; Reston, T.J.; Sawyer, D.; Zelt, C. Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent-ocean transition, West Iberia: New insights from wide-angle seismic. J. Geophys. Res. Solid Earth 2016, 121, 3177–3199. [Google Scholar] [CrossRef] [Green Version]
- Kennett, B.L.; Engdahl, E.; Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Aghaei, O.; Nedimović, M.R.; Carton, H.; Carbotte, S.M.; Canales, J.P.; Mutter, J.C. Crustal thickness and Moho character of the fast-spreading East Pacific Rise from 9°42′ N to 9°57′ N from poststack-migrated 3-D MCS data. Geochem. Geophys. Geosyst. 2014, 15, 634–657. [Google Scholar] [CrossRef] [Green Version]
- Boulahanis, B.; Carbotte, S.M.; Huybers, P.J.; Nedimović, M.R.; Aghaei, O.; Canales, J.P.; Langmuir, C.H. Do sea level variations influence mid-ocean ridge magma supply? A test using crustal thickness and bathymetry data from the East Pacific Rise. Earth Planet. Sci. Lett. 2020, 535, 116121. [Google Scholar] [CrossRef]
- Grevemeyer, I.; Hayman, N.W.; Peirce, C.; Schwardt, M.; Van Avendonk, H.J.; Dannowski, A.; Papenberg, C. Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nat. Geosci. 2018, 11, 444–448. [Google Scholar] [CrossRef]
Layer | Vs(m/s) | Depth (m) | Vp(m/s) | Poisson’s Ratio | Density |
---|---|---|---|---|---|
V0 | 200 to 1500 | 200 to 5000 | 300 to 3500 | 0.2 to 0.5 | 2.4 |
V1 | 1500 to 2800 | 1000 to 8000 | 2000 to 6500 | 0.2 to 0.5 | 2.6 |
V2 | 2600 to 3900 | 2000 to 12,000 | 3500 to 9000 | 0.2 to 0.5 | 2.9 |
V3 | 4200 to 5500 | - | 4000 to 12,000 | 0.2 to 0.5 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamadian Sarvandani, M.; Kästle, E.; Boschi, L.; Leroy, S.; Cannat, M. Seismic Ambient Noise Imaging of a Quasi-Amagmatic Ultra-Slow Spreading Ridge. Remote Sens. 2021, 13, 2811. https://doi.org/10.3390/rs13142811
Mohamadian Sarvandani M, Kästle E, Boschi L, Leroy S, Cannat M. Seismic Ambient Noise Imaging of a Quasi-Amagmatic Ultra-Slow Spreading Ridge. Remote Sensing. 2021; 13(14):2811. https://doi.org/10.3390/rs13142811
Chicago/Turabian StyleMohamadian Sarvandani, Mohamadhasan, Emanuel Kästle, Lapo Boschi, Sylvie Leroy, and Mathilde Cannat. 2021. "Seismic Ambient Noise Imaging of a Quasi-Amagmatic Ultra-Slow Spreading Ridge" Remote Sensing 13, no. 14: 2811. https://doi.org/10.3390/rs13142811
APA StyleMohamadian Sarvandani, M., Kästle, E., Boschi, L., Leroy, S., & Cannat, M. (2021). Seismic Ambient Noise Imaging of a Quasi-Amagmatic Ultra-Slow Spreading Ridge. Remote Sensing, 13(14), 2811. https://doi.org/10.3390/rs13142811