Next Article in Journal
Estimating Tree Diameters from an Autonomous Below-Canopy UAV with Mounted LiDAR
Next Article in Special Issue
Cold Wave-Induced Reductions in NDII and ChlRE for North-Western Pacific Mangroves Varies with Latitude and Climate History
Previous Article in Journal
Modified Linear Scaling and Quantile Mapping Mean Bias Correction of MODIS Land Surface Temperature for Surface Air Temperature Estimation for the Lowland Areas of Peninsular Malaysia
Article

Climatic Regulation of Vegetation Phenology in Protected Areas along Western South America

1
Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
2
Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
3
Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4051381, Chile
4
Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile
5
UMMISCO, UMI 209, Sorbonne Université-IRD, 75006 Paris, France
6
IBENS, UMR CNRS 8197, Eco-Evolution Mathématique, Ecole Normale Supérieure, 75005 Paris, France
7
Centro de Estudios Avanzados en Zonas Áridas, Coquimbo 1781681, Chile
8
Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
9
Departamento de Biología, Universidad de La Serena, La Serena 1720256, Chile
10
Programa de Magister en Oceanografía, Universidad de Concepción, Concepción 4070386, Chile
11
Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado & Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3460000, Chile
12
Data Observatory Foundation, Santiago 7941169, Chile
13
Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
14
Departamento de Ciencias, Facultad de Artes Liberales and Bioengineering Innovation Center, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562340, Chile
*
Author to whom correspondence should be addressed.
Academic Editor: Randolph H. Wynne
Remote Sens. 2021, 13(13), 2590; https://doi.org/10.3390/rs13132590
Received: 6 April 2021 / Revised: 23 June 2021 / Accepted: 29 June 2021 / Published: 2 July 2021
Using 19 years of remotely sensed Enhanced Vegetation Index (EVI), we examined the effects of climatic variability on terrestrial vegetation of six protected areas along southwestern South America, from the semiarid edge of the Atacama desert to southern Patagonia (30°S–51°S). The relationship between satellite phenology and climate indices, namely MEI (Multivariate ENSO Index), PDO (Pacific Decadal Oscillation) and SAM (Southern Annular Mode) were established using statistical analyses for non-stationary patterns. The annual mode of phenological activity fluctuated in strength through time from the semiarid region to the border of southern Patagonia. Concomitantly, enhanced synchrony between EVI and climatic oscillations appeared over interannual cycles. Cross correlations revealed that variability in MEI was the lead predictor of EVI fluctuations over scales shorter than 4 months at lower latitudes and for the most poleward study site. The PDO was correlated with EVI over lags longer than 4 months at low latitude sites, while the SAM showed relationships with EVI only for sites located around 40°S. Our results indicate that the long-term phenological variability of the vegetation within protected areas along southwestern South America is controlled by processes linked to climate indices and that their influence varies latitudinally. Further studies over longer time scales will be needed to improve our understanding the impacts of climate change on vegetation condition and its effect over phenological variability. View Full-Text
Keywords: climatic change; vegetation index; MODIS; phenology; long-term variability climatic change; vegetation index; MODIS; phenology; long-term variability
Show Figures

Graphical abstract

MDPI and ACS Style

Lara, C.; Saldías, G.S.; Cazelles, B.; Rivadeneira, M.M.; Muñoz, R.; Galán, A.; Paredes, Á.L.; Fierro, P.; Broitman, B.R. Climatic Regulation of Vegetation Phenology in Protected Areas along Western South America. Remote Sens. 2021, 13, 2590. https://doi.org/10.3390/rs13132590

AMA Style

Lara C, Saldías GS, Cazelles B, Rivadeneira MM, Muñoz R, Galán A, Paredes ÁL, Fierro P, Broitman BR. Climatic Regulation of Vegetation Phenology in Protected Areas along Western South America. Remote Sensing. 2021; 13(13):2590. https://doi.org/10.3390/rs13132590

Chicago/Turabian Style

Lara, Carlos, Gonzalo S. Saldías, Bernard Cazelles, Marcelo M. Rivadeneira, Richard Muñoz, Alexander Galán, Álvaro L. Paredes, Pablo Fierro, and Bernardo R. Broitman 2021. "Climatic Regulation of Vegetation Phenology in Protected Areas along Western South America" Remote Sensing 13, no. 13: 2590. https://doi.org/10.3390/rs13132590

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop