Assessing Freshwater Changes over Southern and Central Africa (2002–2017)
Abstract
:1. Introduction
2. Study Area
2.1. Location
2.2. River Basins
3. Materials and Methods
3.1. Data
3.1.1. TWS Data
3.1.2. Precipitation Data
3.1.3. Evapotranspiration (ET)
3.2. Methodology
3.2.1. Rotated Principal Component Analysis (rPCA)
3.2.2. Multiple Linear Regression Analysis
3.2.3. Variability Index, Trends, and Annual Amplitudes
4. Results and Discussions
4.1. Spatio-Temporal Variability of Rainfall and Terrestrialwater Storage
4.1.1. Terrestrial Water Storage
4.1.2. Rainfall Variability
4.1.3. Trends in TWS and Rainfall
4.2. Hydrological Response of TWS to Climate Data
TWS and Links to Evapotranspiration Anomalies (ETa) and Precipitation
4.3. Influence of Evapotranspiration Anomalies on Rainfall Frequency during the 2002–2017 Period
5. Conclusions
- (i)
- High annual variability of GRACE-derived surface mass variations is observed in the Democratic Republic of Congo, Central African Republic, Zambia, Malawi, Republic of the Congo, and Gabon. This suggests the huge impact of the Congo basin in regulating TWS fluctuations in this region. Additionally, the Congo River basin, which is largely dominated by multi-annual signals was identified from the rPCA result.
- (ii)
- Precipitation over the region is dominated by annual and bi-modal multi-annual patterns influenced by circulation features, vegetation height, and climate teleconnections. Even though an overall TWS loss in the studied river basins was not observed, episodes of estimated losses in TWS in the northern part of the Central African region which is consistent with past studies are noted. This loss in TWS seems to be caused by natural inter-annual variability, although past studies insinuated that the surface runoff rate is enhanced by deforestation. This means that an increase in WSI ET is expected. The region also experienced an increase in precipitation rate between mid-2013 and mid-2016. Due to the consistency in the postulated negative correlation between TWS in the Congo and Amazon River basins, we therefore claim large-scale climatic oscillation as the ultimate driver of the TWS fluctuation in this region amidst other factors.
- (iii)
- The Limpopo River basin experienced a negative trend of about −4.6 ± 3.2 mm in TWS between 2006 and 2012. The 6% below average reduction in rainfall rate is also a contributor to this situation. The center of the region is dominated by Lake Malawi which maintained a correlation of 0.88 with the regional TWS. The lake declined at an estimated rate of 77 mm/year during this period, thus contributing to the observed trend in TWS. Therefore, we attribute the cause of this apparent trend to natural and climatic variability, although a 7% decrease in precipitation is predicted during this century.
- (iv)
- Estimated TWS trends (α = 0.05) in the five river basins in SCA for the 2002–2017 period indicates that the Okavango maintained a consistent increase in TWS between 2002–2011 and had a consistent fall from 2011 to 2017. It also experienced the highest WSI ET amongst other basins. The Okavango River basin was seen to experience dramatic spikes in TWS. Positives spikes were observed in 2007, 2011, and 2014 followed by a negative spike in 2016. Apart from 2015, the Limpopo River basin maintained an increased wetting precipitation trend from 2002 to 2017. This is evident in the average TWS gain of 0.81 ± 4.2 mm/year recorded within the study period. Additionally, the Orange River basins had an average TWS gain of 0.34 ± 9.1 mm/year regardless of the high fluctuation rate observed in precipitation patterns.
- (v)
- Overall, rainfall leads TWS in approximately five months majorly in the central part of the study region with maximum correlation coefficients (r) ranging from 0.7 to 0.9. TWS in some parts of SCA however, show low and modest correlations with precipitation. In these hydrological regions, precipitation leads TWS with a phase lag ranging from two to five months and shows that besides rainfall, other primary drivers of variations in TWS exist, and are yet another pointer to the role of ETa in TWS fluctuations carried out in this study. Additionally, considering the average r2 values and uncertainties in modeling precipitation over the humid part of the study area (major central Africa), advancing the multi-linear regression model for better climatology and freshwater prediction could mean inflation of the independent variables to include other germane physical processes.
- (vi)
- The ETa fluctuations observed in this study correlated more with rainfall than TWS because of the respective direct and indirect interactions existent between these components. The highest ET rate was observed during the dry period (for example, DJF) because of atmospheric radiation and latent heat release. However, we observed the anomaly spiking in intervals between the summer and winter period as shown in the appendix plots. This evidently shows that the average relationship between ETa and TWS can be sustainable as well as important in analyzing TWS fluctuation patterns during the period of high climatic variations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Famiglietti, J.S.; Cazenave, A.; Eicker, A.; Reager, J.T.; Rodell, M.; Velicogna, I. Satellites provide the big picture. Science 2015, 349, 684–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodell, M.; Famiglietti, J. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2001, 37, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Getirana, A.; Kumar, S.; Girotto, M.; Rodell, M. Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability. Geophys. Res. Lett. 2017, 44, 10–359. [Google Scholar] [CrossRef] [Green Version]
- Dyer, E.L.E.; Jones, D.B.A.; Nusbaumer, J.; Li, H.; Collins, O.; Vettoretti, G.; Noone, D. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. J. Geophys. Res. Atmos. 2017, 122, 6882–6898. [Google Scholar] [CrossRef]
- Laporte, N.T.; Stabach, J.A.; Grosch, R.; Lin, T.S.; Goetz, S. Expansion of Industrial Logging in Central Africa. Science 2007, 316, 1451. [Google Scholar] [CrossRef] [Green Version]
- Turubanova, S.; Potapov, P.V.; Tyukavina, A.; Hansen, M.C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 2018, 13, 074028. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.P.; Tompkins, A.M.; Bouka-Biona, C.; Sanda, I.S. A process-based investigation into the impact of the Congo basin deforestation on surface climate. J. Geophys. Res. Atmos. 2015, 120, 5721–5739. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.M. Temperature Variability over Africa. J. Clim. 2011, 24, 3649–3666. [Google Scholar] [CrossRef] [Green Version]
- James, R.; Washington, R. Changes in African temperature and precipitation associated with degrees of global warming. Clim. Chang. 2013, 117, 859–872. [Google Scholar] [CrossRef]
- Hua, W.; Zhou, L.; Chen, H.; Nicholson, S.; Raghavendra, A.; Jiang, Y. Possible causes of the Central Equatorial African long-term drought. Environ. Res. Lett. 2016, 11, 124002. [Google Scholar] [CrossRef]
- Dezfuli, A. Climate of Western and Central Equatorial Africa; Oxford University Press (OUP): Oxford, UK, 2017. [Google Scholar]
- Zhou, L.; Tian, Y.; Myneni, R.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C.; et al. Widespread decline of Congo rainforest greenness in the past decade. Nat. Cell Biol. 2014, 509, 86–90. [Google Scholar] [CrossRef]
- Diem, J.E.; Ryan, S.; Hartter, J.; Palace, M.W. Satellite-based rainfall data reveal a recent drying trend in central equatorial Africa. Clim. Chang. 2014, 126, 263–272. [Google Scholar] [CrossRef]
- Ndehedehe, C.; Awange, J.; Agutu, N.; Kuhn, M.; Heck, B. Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Adv. Water Res. 2016, 88, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Ndehedehe, C.E.; Agutu, N.O.; Okwuashi, O.; Ferreira, V.G. Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis. J. Hydrol. 2016, 540, 106–128. [Google Scholar] [CrossRef] [Green Version]
- Ndehedehe, C.E.; Awange, J.L.; Agutu, N.O.; Okwuashi, O. Changes in hydro-meteorological conditions over tropical West Africa (1980–2015) and links to global climate. Glob. Planet. Chang. 2018, 162, 321–341. [Google Scholar] [CrossRef] [Green Version]
- Ndehedehe, C.E.; Okwuashi, O.; Ferreira, V.G.; Agutu, N.O. Exploring evapotranspiration dynamics over Sub-Sahara Africa (2000–2014). Environ. Monit. Assess. 2018, 190, 400. [Google Scholar] [CrossRef] [Green Version]
- Washington, R.; James, R.; Pearce, H.; Pokam, W.M.; Moufouma-Okia, W. Congo Basin rainfall climatology: Can we believe the climate models? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120296. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Wiese, D.N. Short-term trends in Africa’s freshwater resources: Rates and drivers. Sci. Total. Environ. 2019, 695, 133843. [Google Scholar] [CrossRef]
- Asefi-Najafabady, S.; Saatchi, S. Response of African humid tropical forests to recent rainfall anomalies. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorí, R.; Nieto, R.; Vicente-Serrano, S.M.; Drumond, A.; Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dyn. 2017, 8, 653–675. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Burnett, M.W.; Quetin, G.R.; Konings, A.G. Data-driven estimates of evapotranspiration and its controls in the Congo Basin. Hydrol. Earth Syst. Sci. 2020, 24, 4189–4211. [Google Scholar] [CrossRef]
- Ahmed, M.; Sultan, M.; Elbayoumi, T.; Tissot, P. Forecasting GRACE Data over the African Watersheds Using Artificial Neural Networks. Remote Sens. 2019, 11, 1769. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Space Phys. 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour. Res. 1999, 35, 2705–2723. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Yeh, P.J.-F.; Wahr, J.; Famiglietti, J. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Chen, J. Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet. Sci. Lett. 2010, 298, 263–274. [Google Scholar] [CrossRef]
- Forootan, E.; Kusche, J.; Loth, I.; Schuh, W.-D.; Eicker, A.; Awange, J.; Longuevergne, L.; Diekkrüger, B.; Schmidt, M.; Shum, C.K. Multivariate Prediction of Total Water Storage Changes Over West Africa from Multi-Satellite Data. Surv. Geophys. 2014, 35, 913–940. [Google Scholar] [CrossRef] [Green Version]
- López, O.; Houborg, R.; McCabe, M.F. Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data. Hydrol. Earth Syst. Sci. 2017, 21, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Andam-Akorful, S.A.; Ferreira, V.G.; Awange, J.; Forootan, E.; He, X.F. Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa. Int. J. Clim. 2015, 35, 3132–3145. [Google Scholar] [CrossRef] [Green Version]
- Awange, J.; Schumacher, M.; Forootan, E.; Heck, B. Exploring hydro-meteorological drought patterns over the Greater Horn of Africa (1979–2014) using remote sensing and reanalysis products. Adv. Water Res. 2016, 94, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Anderson, W.; Zaitchik, B.F.; Hain, C.R.; Anderson, M.; Yilmaz, M.T.; Mecikalski, J.R.; Schultz, L. Towards an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci. 2012, 16, 2893–2913. [Google Scholar] [CrossRef] [Green Version]
- Omondi, P.A.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M.; et al. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to2010. Int. J. Clim. 2014, 34, 1262–1277. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Awange, J.L.; Kuhn, M.; Agutu, N.O.; Fukuda, Y. Analysis of hydrological variability over the Volta river basin using in-situ data and satellite observations. J. Hydrol. Reg. Stud. 2017, 12, 88–110. [Google Scholar] [CrossRef]
- Anyah, R.; Forootan, E.; Awange, J.; Khaki, M. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products. Sci. Total. Environ. 2018, 635, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Longuevergne, L.; Ringler, C.; Scanlon, B.R. Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrol. Earth Syst. Sci. 2012, 16, 3083–3099. [Google Scholar] [CrossRef] [Green Version]
- Pedinotti, V.; Boone, A.; Decharme, B.; Crétaux, J.F.; Mognard, N.; Panthou, G.; Papa, F.; Tanimoun, B.A. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets. Hydrol. Earth Syst. Sci. 2012, 16, 1745–1773. [Google Scholar] [CrossRef] [Green Version]
- Kittel, C.M.M.; Nielsen, K.; Tøttrup, C.; Bauer-Gottwein, P. Informing a hydrological model of the Ogooué with multi-mission remote sensing data. Hydrol. Earth Syst. Sci. 2018, 22, 1453–1472. [Google Scholar] [CrossRef] [Green Version]
- Grippa, M.; Kergoat, L.; Frappart, F.; Araud, Q.; Boone, A.; De Rosnay, P.; Lemoine, J.-M.; Gascoin, S.; Balsamo, G.; Ottle, C.; et al. Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Ahmed, M.; Sultan, M.; Yan, E.; Wahr, J. Assessing and Improving Land Surface Model Outputs Over Africa Using GRACE, Field, and Remote Sensing Data. Surv. Geophys. 2016, 37, 529–556. [Google Scholar] [CrossRef]
- Cazenave Swenson, S.; Wahr, J. Monitoring the water balance of Lake Victoria, East Africa, from space. J. Hydrol. 2009, 370, 163–176. [Google Scholar] [CrossRef]
- Hassan, A.; Jin, S. Water Cycle and Climate Signals in Africa Observed by Satellite Gravimetry. Iop Conf. Ser. Earth Environ. Sci. 2014, 17, 12149. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.A.; Jin, S. Lake level change and total water discharge in East Africa Rift Valley from satellite-based observations. Glob. Planet. Chang. 2014, 117, 79–90. [Google Scholar] [CrossRef]
- Becker, M.; Llovel, W.; Cazenave, A.; Güntner, A.; Crétaux, J.-F. Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. Comptes Rendus Geosci. 2010, 342, 223–233. [Google Scholar] [CrossRef]
- Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J.S.; Prigent, C.; Seyler, F. Satellite-based estimates of surface water dynamics in the Congo River Basin. Int. J. Appl. Earth Obs. Geoinform. 2018, 66, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.; Ahmed, M.; Wahr, J.; Yan, E.; Emil, M.K. Monitoring aquifer depletion from space: Case studies from the Saharan and Arabian aquifers. Remote Sens. Terr. Water Cycle 2014, 206, 349. [Google Scholar]
- Nanteza, J.; De Linage, C.R.; Thomas, B.F.; Famiglietti, J.S. Monitoring groundwater storage changes in complex basement aquifers: An evaluation of the GRACE satellites over East Africa. Water Res. Res. 2016, 52, 9542–9564. [Google Scholar] [CrossRef]
- Mazzoni, A.; Heggy, E.; Scabbia, G. Forecasting water budget deficits and groundwater depletion in the main fossil aquifer systems in North Africa and the Arabian Peninsula. Glob. Environ. Chang. 2018, 53, 157–173. [Google Scholar] [CrossRef]
- Lezzaik, K.; Milewski, A.; Mullen, J. The groundwater risk index: Development and application in the Middle East and North Africa region. Sci. Total. Environ. 2018, 628–629, 1149–1164. [Google Scholar] [CrossRef]
- Henry, C.M. An Integrated Approach to Estimating Groundwater Recharge and Storage Variability in Southern Mali, Africa. Doctoral Dissertation, Simon Fraser University, Burnaby, BC, Canada, 2011. [Google Scholar]
- Gonçalvès, J.; Petersen, J.; Deschamps, P.; Hamelin, B.; Baba-Sy, O. Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys. Res. Lett. 2013, 40, 2673–2678. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelmohsen, K. Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surv. Geophys. 2018, 39, 729–751. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Sultan, M.; Ahmed, M.; Save, H.; Elkaliouby, B.; Emil, M.; Yan, E.; Abotalib, A.Z.; Krishnamurthy, R.; Abdelmalik, K. Response of deep aquifers to climate variability. Sci. Total. Environ. 2019, 677, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Rateb, A.; Kuo, C.-Y.; Imani, M.; Tseng, K.-H.; Lan, W.-H.; Ching, K.-E.; Tseng, T.-P. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods. Sensors 2017, 17, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramillien, G.; Frappart, F.; Seoane, L. Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa. Remote Sens. 2014, 6, 7379–7405. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.; Chen, J.; Wilson, C.R.; Hu, X. Long-Term Water Storage Changes of Lake Volta from GRACE and Satellite Altimetry and Connections with Regional Climate. Remote Sens. 2017, 9, 842. [Google Scholar] [CrossRef] [Green Version]
- Moore, P.; Williams, S.D.P. Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003–2011. Water Resour. Res. 2014, 50, 9696–9720. [Google Scholar] [CrossRef]
- Krogh, P.E.; Andersen, O.B.; Michailovsky, C.I.B.; Bauer-Gottwein, P.; Rowlands, D.D.; Luthcke, S.B.; Chinn, D.S. Evaluating terrestrial water storage variations from regionally constrained GRACE mascon data and hydrological models over Southern Africa—Preliminary results. Int. J. Remote Sens. 2010, 31, 3899–3912. [Google Scholar] [CrossRef]
- Hasan, E.; Tarhule, A.; Hong, Y.; Moore, B. Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data. Remote Sens. 2019, 11, 904. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Wood, E.F.; Medvigy, D.; Kimball, J.; Pan, M.; Caylor, K.K.; Sheffield, J.; Xu, X.; Jones, M.O. Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. J. Geophys. Res. Biogeosci. 2014, 119, 1652–1669. [Google Scholar] [CrossRef]
- Boy, J.-P.; Hinderer, J.; De Linage, C. Retrieval of Large-Scale Hydrological Signals in Africa from GRACE Time-Variable Gravity Fields. Pure Appl. Geophys. 2012, 169, 1373–1390. [Google Scholar] [CrossRef]
- Saatchi Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci. Rev. 2014, 136, 289–300. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Asiah, Z.; Xu, J.; Gong, Z.; Andam-Akorful, S.A. Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors. Water 2018, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Crowley, J.W.; Mitrovica, J.X.; Bailey, R.C.; Tamisiea, M.E.; Davis, J.L. Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Kiwiel, K.C. Breakpoint searching algorithm Possible causes of the Central Equatorial s for the continuous quadratic knapsack problem. Math. Program. 2008, 112, 473–491. [Google Scholar] [CrossRef]
- Ujeneza, E.L.; Abiodun, B.J. Drought regimes in Southern Africa and how well GCMs simulate them. Clim. Dyn. 2015, 44, 1595–1609. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal component analysis. Technometrics 2003, 45, 276. [Google Scholar]
- Jolliffe, I.T.; Trendafilov, N.; Uddin, M. A Modified Principal Component Technique Based on the LASSO. J. Comput. Graph. Stat. 2003, 12, 531–547. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Swenson, S.; Velicogna, I. Accuracy of GRACE mass estimates. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef] [Green Version]
- Panday, P.K.; Coe, M.T.; Macedo, M.N.; Lefebvre, P.; Castanho, A.D.D.A. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 2015, 523, 822–829. [Google Scholar] [CrossRef]
- De Almeida, F.G.V.; Calmant, S.; Seyler, F.; Ramillien, G.; Blitzkow, D.; Matos, A.C.C.; Silva, J.S. Time-variations of equivalent water heights’from Grace Mission and in-situ river stages in the Amazon basin. Acta Amaz. 2012, 42, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Alencar, A. Drought impacts on the Amazon forest: The remote sensing perspective. New Phytol. 2010, 187, 569–578. [Google Scholar] [CrossRef]
- Alsdorf, D.; Han, S.-C.; Bates, P.; Melack, J. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens. Environ. 2010, 114, 2448–2456. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Yang, Z.-L.; Niu, G.Y. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res. Space Phys. 2009, 114, 114. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Famiglietti, J.; Prigent, C.; Rossow, W.B.; Seyler, F. Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin. J. Geophys. Res. Space Phys. 2008, 113, 113. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.; Famiglietti, J.; Chen, J.; Rodell, M.; Seneviratne, S.I.; Viterbo, P.; Wilson, C.R. Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys. Res. Lett. 2005, 32, 32. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.T.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Adeyewa, Z.D.; Nakamura, K. Validation of TRMM radar rainfall data over major climatic regions in Africa. J. Appl. Meteorol. 2003, 42, 331–347. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposia of the Society for Experimental Biology; Cambridge University Press (CUP): Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Anyah, R.O.; Alsdorf, D.; Agutu, N.O.; Ferreira, V.G. Modelling the impacts of global multi-scale climatic drivers on hydro-climatic extremes (1901–2014) over the Congo basin. Sci. Total. Environ. 2019, 651, 1569–1587. [Google Scholar] [CrossRef]
- Agutu, N.; Awange, J.; Zerihun, A.; Ndehedehe, C.; Kuhn, M.; Fukuda, Y. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Ivits, E.; Horion, S.; Fensholt, R.; Cherlet, M. Drought footprint on E uropean ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Glob. Chang. Biol. 2014, 20, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Montazerolghaem, M.; Vervoort, R.; Minasny, B.; McBratney, A. Long-term variability of the leading seasonal modes of rainfall in south-eastern Australia. Weather. Clim. Extrem. 2016, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Westra, S.; Brown, C.; Lall, U.; Koch, I.; Sharma, A. Interpreting variability in global SST data using independent component analysis and principal component analysis. Int. J. Clim. 2009, 30, 333–346. [Google Scholar] [CrossRef]
- Rieser, D.; Kuhn, M.; Pail, R.; Anjasmara, I.M.; Awange, J. Relation between GRACE-derived surface mass variations and precipitation over Australia. Aust. J. Earth Sci. 2010, 57, 887–900. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1970. [Google Scholar]
- Hamed, K. Exact distribution of the Mann–Kendall trend test statistic for persistent data. J. Hydrol. 2009, 365, 86–94. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Gentilucci, M.; Parisi, C.; Coppola, M.R.; Majdoubi, F.-Z.; Madonna, A.; Guerriero, G. Influence of Mediterranean Sea Temperature Increase on Gaeta Gulf (Tyrrhenian Sea) Biodiversity. Proc. Zool. Soc. 2021, 74, 91–103. [Google Scholar] [CrossRef]
- USAID. 2020 World Population Data Sheet. United States Agency International Development. Available online: www.prb.org (accessed on 1 June 2021).
- Kristen, I.; Fuhrmann, A.; Thorpe, J.; Röhl, U.; Wilkes, H.; Oberhänsli, H.; Kristen, I.; Fuhrmann, A.; Thorpe, J.; Röhl, U.; et al. Hydrological changes in southern Africa over the last 200 Ka as recorded in lake sediments from the Tswaing impact crater. South Afr. J. Geol. 2007, 110, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S. Spatial teleconnections in African rainfall: A comparison of 19th and 20th century patterns. Holocene 2014, 24, 1840–1848. [Google Scholar] [CrossRef]
- Bello, G.H.M.; Maman, M.N.M. A Ricardian Analysis of the Impact of Temperature and Rainfall Variability on Ag-riculture in Dosso and Maradi Regions of Niger Republic. Agric. Sci. 2015, 06, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Laux, P. Statistical Modeling of Precipitation for Agricultural Planning in the Volta Basin of West Africa. Doctoral Dissertation, Mitteilungen/InstitutfrWasserbau, Universitt Stuttgart, Stuttgart, Germany, 2009. Available online: Elib.uni-stuttgart.de/opus/volltexte/2009/4016/pdf/Dissertation-Laux.pdf (accessed on 3 November 2020).
- Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- McKee, T.B. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995. [Google Scholar]
- Boone, A.; De Rosnay, P.; Balsamo, G.; Beljaars, A.; Chopin, F.; Decharme, B.; Delire, C.; Ducharne, A.; Gascoin, S.; Grippa, M.; et al. The AMMA Land Surface Model Intercomparison Project (ALMIP). Bull. Am. Meteorol. Soc. 2009, 90, 1865–1880. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Adv. Geosci. 2006, 9, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Kunstmann, H.; Bárdossy, A.; Conrad, C.; Colditz, R. Water balance estimation of a poorly gauged catchment in West Africa using dynamically downscaled meteorological fields and remote sensing information. Phys. Chem. Earth Parts A/B/C 2009, 34, 225–235. [Google Scholar] [CrossRef]
- Leblanc, M.; Favreau, G.; Tweed, S.; LeDuc, C.; Razack, M.; Mofor, L. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeol. J. 2006, 15, 97–100. [Google Scholar] [CrossRef]
- White, R.; Toumi, R. River flow and ocean temperatures: The Congo River. J. Geophys. Res. Ocean. 2014, 119, 2501–2517. [Google Scholar] [CrossRef]
- Samba, G.; Nganga, D. Rainfall variability in Congo-Brazzaville: 1932—2007. Int. J. Clim. 2012, 32, 854–873. [Google Scholar] [CrossRef]
Season 1 (mm) | Season 2 (mm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAM | SON | DJF | JJA | |||||||||
Congo | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS |
2002–2005 | 156.772 | 259.734 | 34.164 | 189.533 | 220.851 | −39.895 | 173.778 | 222.397 | 7.188 | 94.859 | 159.000 | −9.608 |
2006–2009 | 178.930 | 269.651 | 31.731 | 197.548 | 225.421 | −37.553 | 165.339 | 223.229 | 16.444 | 101.620 | 173.736 | −7.742 |
2010–2013 | 156.468 | 276.589 | 34.055 | 198.000 | 230.575 | −39.571 | 160.657 | 230.122 | 5.543 | 98.352 | 169.323 | −7.678 |
2014–2017 | 167.161 | 285.055 | 34.288 | 203.525 | 234.968 | −33.505 | 176.155 | 225.200 | 10.579 | 92.006 | 179.884 | −1.068 |
MLRS (r2 = 0.86) | MLRS (r2 = 0.70) | MLRS (r2 = 0.43) | MLRS (r2 = 0.97) | |||||||||
Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | |
Coefficients | 39.212 | −0.105 | 0.043 | −114.90 | 0.616 | −0.194 | 328.4 | −0.325 | −1.170 | −19.424 | −0.473 | 0.344 |
SE | 12.916 | 0.044 | 0.044 | 60.027 | 0.844 | 0.793 | 382.6 | 0.647 | 1.351 | 0.505 | 0.004 | 0.002 |
t-stat | 3.036 | −2.371 | 0.973 | −1.914 | 0.729 | −0.244 | 0.858 | −0.502 | −0.866 | −38.427 | −122.7 | 187.9 |
p-value | 0.203 | 0.254 | 0.509 | 0.306 | 0.599 | 0.847 | 0.548 | 0.704 | 0.546 | 0.017 | 0.005 | 0.003 |
Zambezi | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS |
2002–2005 | 75.902 | 205.660 | −3.464 | 40.358 | 67.479 | −46.536 | 196.487 | 227.456 | −30.230 | 3.498 | 62.780 | −26.195 |
2006–2009 | 75.304 | 219.480 | 25.761 | 50.665 | 70.255 | −29.783 | 226.659 | 246.941 | −4.481 | 3.584 | 71.700 | −7.224 |
2010–2013 | 69.459 | 222.093 | 52.580 | 41.369 | 68.772 | −2.369 | 210.376 | 247.376 | 22.071 | 2.747 | 73.425 | 23.216 |
2014–2017 | 67.022 | 235.552 | 35.658 | 38.985 | 63.851 | −17.309 | 206.849 | 220.576 | −2.289 | 2.017 | 78.682 | 8.623 |
MLRS (r2 = 0.58) | MLRS (r2 = 0.30) | MLRS (r2 = 0.32) | MLRS (r2 = 0.63) | |||||||||
Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | |
Coefficients | 97.314 | −2.670 | 0.554 | −36.412 | −0.844 | 0.718 | −220.8 | 0.175 | 0.765 | −152.6 | −3.196 | 2.256 |
SE | 1038.6 | 7.122 | 2.542 | 559.6 | 5.518 | 10.690 | 327.9 | 1.933 | 1.772 | 311.8 | 29.728 | 3.295 |
t-stat | 0.094 | −0.375 | 0.218 | −0.065 | −0.153 | 0.067 | −0.674 | 0.091 | 0.432 | −0.490 | −0.107 | 0.684 |
p-value | 0.941 | 0.772 | 0.863 | 0.959 | 0.903 | 0.957 | 0.623 | 0.942 | 0.740 | 0.710 | 0.931 | 0.617 |
Okavango | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS |
2002–2005 | 48.394 | 96.183 | 3.554 | 30.949 | 30.236 | −46.440 | 122.255 | 116.138 | −25.229 | 1.004 | 25.584 | −27.257 |
2006–2009 | 52.284 | 119.4 | 18.956 | 34.915 | 37.150 | −34.824 | 133.424 | 126.539 | −10.341 | 1.919 | 33.857 | −12.933 |
2010–2013 | 52.000 | 110.6 | 53.192 | 27.020 | 31.979 | 2.030 | 130.352 | 144.269 | 25.114 | 0.211 | 32.052 | 22.812 |
2014–2017 | 53.134 | 125.5 | 36.653 | 24.495 | 29.230 | −13.523 | 107.856 | 103.461 | 8.698 | 0.447 | 35.710 | 3.083 |
MLRS (r2 = 0.90) | MLRS (r2 = 0.89) | MLRS (r2 = 0.77) | MLRS (r2 = 0.74) | |||||||||
Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | |
Coefficients | −1031.4 | 28.665 | −3.676 | −18.414 | −7.580 | 6.770 | 78.722 | −2.662 | 2.035 | −69.80 | −18.45 | 2.602 |
SE | 370.7 | 10.858 | 1.783 | 64.775 | 2.626 | 3.403 | 120.9 | 1.695 | 1.123 | 81.226 | 14.415 | 2.484 |
t-stat | −2.782 | 2.639 | −2.061 | −0.284 | −2.886 | 1.989 | 0.650 | −1.569 | 1.812 | −0.859 | −1.280 | 1.047 |
p-value | 0.219 | 0.230 | 0.287 | 0.823 | 0.212 | 0.29656 | 0.632 | 0.361 | 0.320 | 0.548 | 0.422 | 0.485 |
Limpopo | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS |
2002–2005 | 40.590 | 102.9 | 34.516 | 32.196 | 55.592 | −5.225 | 97.689 | 125.187 | 20.885 | 6.924 | 41.705 | 14.045 |
2006–2009 | 34.794 | 111.0 | 21.857 | 48.033 | 69.659 | −26.013 | 95.596 | 154.971 | 9.905 | 7.450 | 43.273 | −4.163 |
2010–2013 | 37.059 | 99.025 | 13.401 | 39.023 | 71.945 | −38.622 | 97.666 | 165.082 | 2.153 | 2.671 | 43.659 | −15.499 |
2014–2017 | 41.420 | 122.3 | 18.160 | 31.257 | 60.737 | −35.082 | 84.744 | 130.925 | −1.485 | 3.614 | 44.882 | −10.508 |
MLRS (r2 = 0.19) | MLRS (r2 = 0.78) | MLRS (r2 = 0.92) | MLRS (r2 = 0.79) | |||||||||
Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | |
Coefficients | 1.653 | 1.271 | −0.262 | 83.50 | 1.583 | −2.625 | −77.30 | 1.533 | −0.408 | 249.9 | 1.908 | −6.081 |
SE | 115.2 | 2.803 | 0.841 | 61.48 | 1.398 | 1.416 | 43.377 | 0.504 | 0.163 | 272.4 | 3.314 | 6.010 |
t-stat | 0.014 | 0.453 | −0.312 | 1.358 | 1.132 | −1.853 | −1.782 | 3.041 | −2.492 | 0.917 | 0.575 | −1.011 |
p-value | 0.990 | 0.728 | 0.807 | 0.404 | 0.460 | 0.315 | 0.325 | 0.202 | 0.242 | 0.527 | 0.667 | 0.496 |
Orange | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS | Precip. | ET | TWS |
2002–2005 | 31.337 | 39.957 | −0.414 | 23.069 | 24.352 | −34.727 | 64.836 | 48.230 | −14.147 | 15.558 | 25.973 | −14.304 |
2006–2009 | 34.784 | 43.702 | 23.055 | 33.690 | 32.632 | −16.943 | 62.698 | 53.558 | 3.824 | 13.092 | 31.926 | 0.951 |
2010–2013 | 33.685 | 42.074 | 40.082 | 19.569 | 24.390 | −10.084 | 67.482 | 58.898 | 15.848 | 9.257 | 29.815 | 18.970 |
2014–2017 | 28.538 | 42.570 | 28.366 | 21.774 | 24.523 | −28.804 | 49.993 | 44.461 | −2.719 | 8.647 | 28.090 | −3.549 |
MLRS (r2 = 0.43) | MLRS (r2 = 0.97) | MLRS (r2 = 0.99) | MLRS (r2 = 0.64) | |||||||||
Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | Inter. | Precip. | ET | |
Coefficients | −274.0 | −0.192 | 7.201 | −151.5 | −7.037 | 11.389 | −64.532 | −1.554 | 3.128 | −48.342 | −2.230 | 2.584 |
SE | 347.6 | 4.914 | 8.673 | 28.186 | 1.600 | 2.446 | 10.217 | 0.255 | 0.314 | 112.3 | 2.661 | 3.440 |
t-stat | −0.788 | −0.039 | 0.830 | −5.377 | −4.398 | 4.655 | −6.315 | −6.090 | 9.953 | −0.430 | −0.838 | 0.751 |
p-value | 0.575 | 0.975 | 0.5588 | 0.117 | 0.142 | 0.134 | 0.0999 | 0.103 | 0.063 | 0.741 | 0.555 | 0.589 |
Basin | 2002* | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Congo | 193.1 | 214.9 | 211.8 | 218.4 | 221.6 | 218.2 | 216.5 | 230.0 | 236.0 | 224.0 | 215.9 | 227.6 | 230.5 | 228.6 | 230.8 | 234.0 |
Zambezi | 73.4 | 137.8 | 160.4 | 126.5 | 158.6 | 142.1 | 150.7 | 161.8 | 160.8 | 158.5 | 144.8 | 145.3 | 155.1 | 141.2 | 144.8 | 171.7 |
Okavango | 32.8 | 55.4 | 78.1 | 60.6 | 97.5 | 56.0 | 81.0 | 89.6 | 84.3 | 95.8 | 73.7 | 62.1 | 93.5 | 50.1 | 62.5 | 101.9 |
Limpopo | 46.5 | 70.5 | 90.8 | 66.2 | 103.5 | 83.5 | 83.4 | 103.5 | 93.8 | 94.9 | 77.8 | 88.3 | 106.3 | 68.6 | 71.2 | 116.6 |
Orange | 29.2 | 31.6 | 32.6 | 34.6 | 49.2 | 33.6 | 39.3 | 42.0 | 38.7 | 45.2 | 38.8 | 34.1 | 40.9 | 31.8 | 34.5 | 38.3 |
Basin | 2002* | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Congo | 195.3 | 151.5 | 156.8 | 144.7 | 170.6 | 169.7 | 152.6 | 152.2 | 155.2 | 160.2 | 155.5 | 147.6 | 142.0 | 155.9 | 158.4 | 170.6 |
Zambezi | 62.3 | 77.3 | 88.0 | 69.2 | 90.2 | 88.9 | 90.3 | 86.4 | 84.4 | 84.2 | 79.1 | 72.6 | 82.4 | 64.5 | 72.2 | 95.4 |
Okavango | 31.8 | 40.7 | 52.8 | 48.7 | 70.9 | 41.1 | 60.0 | 66.7 | 52.6 | 65.3 | 50.3 | 38.5 | 53.5 | 31.9 | 42.0 | 56.3 |
Limpopo | 32.7 | 36.4 | 54.8 | 33.7 | 60.7 | 47.7 | 41.4 | 51.5 | 46.6 | 43.3 | 31.9 | 50.5 | 51.3 | 26.2 | 38.0 | 51.8 |
Orange | 33.5 | 22.6 | 30.9 | 29.9 | 49.0 | 28.7 | 34.0 | 39.6 | 36.4 | 39.7 | 31.0 | 27.3 | 31.2 | 20.2 | 29.0 | 31.9 |
Basin | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Congo | - | 0.232 | −0.266 | −0.375 | −0.687 | 0.196 | 0.165 | 0.180 | 0.292 | −0.271 | −0.197 | 0.032 | 0.008 | −0.035 | 0.324 | - |
Zambezi | - | −0.930 | −0.496 | −1.228 | −0.662 | −0.538 | −0.036 | 0.482 | 0.717 | 0.915 | 0.824 | 0.679 | 0.636 | 0.187 | −0.251 | - |
Okavango | - | −1.017 | −0.581 | −0.797 | −0.635 | −0.570 | −0.314 | 0.074 | 0.435 | 1.331 | 1.081 | 0.528 | 0.568 | 0.108 | −0.012 | - |
Limpopo | - | 0.420 | 1.063 | −0.162 | 0.599 | −0.447 | 0.023 | 0.143 | −0.239 | −0.082 | −0.892 | −0.263 | 0.536 | −0.705 | −1.119 | - |
Orange | - | −0.950 | −0.726 | −0.542 | 1.125 | −0.662 | −0.162 | 0.015 | 0.059 | 1.424 | 0.448 | 0.261 | 0.299 | −0.344 | −0.596 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalu, I.; Ndehedehe, C.E.; Okwuashi, O.; Eyoh, A.E. Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sens. 2021, 13, 2543. https://doi.org/10.3390/rs13132543
Kalu I, Ndehedehe CE, Okwuashi O, Eyoh AE. Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sensing. 2021; 13(13):2543. https://doi.org/10.3390/rs13132543
Chicago/Turabian StyleKalu, Ikechukwu, Christopher E. Ndehedehe, Onuwa Okwuashi, and Aniekan E. Eyoh. 2021. "Assessing Freshwater Changes over Southern and Central Africa (2002–2017)" Remote Sensing 13, no. 13: 2543. https://doi.org/10.3390/rs13132543
APA StyleKalu, I., Ndehedehe, C. E., Okwuashi, O., & Eyoh, A. E. (2021). Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sensing, 13(13), 2543. https://doi.org/10.3390/rs13132543