Impacts of Dam Operation on Vegetation Dynamics of Mid-Channel Bars in the Mid-Lower Yangtze River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing Methods
2.2.1. Data Sources
2.2.2. Extracting Vegetation Patches
- Step 1: Selecting Landsat images
- Step 2: Clipping images
- Step 3: Extracting vegetation patches
- Step 4: Accuracy assessment
2.2.3. Data Analysis Methods
3. Results
3.1. Accuracy Assessment of Extracted MCBs Dataset
3.2. Overall VACIs in MCBs
3.3. Relationship between the VACI and the Size of MCBs
3.4. Relationship between the VACI and the Distance to the TGD
4. Discussion
4.1. Driving Factors
4.2. Uncertainties and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bejarano, M.D.; Nilsson, C.; Aguiar, F.C. Riparian plant guilds become simpler and most likely fewer following flow regulation. J. Appl. Ecol. 2018, 55, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Meade, R.H.; Moody, J.A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 2010, 24, 35–49. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Xu, K.H.; Deng, B.; Zhang, X.Y.; Luo, X.X. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.; Chen, L.; Wasson, R.J. Downstream geomorphic impact of the Three Gorges Dam: With special reference to the channel bars in the Middle Yangtze River. Earth Surf. Process. Landf. 2019, 44, 2660–2670. [Google Scholar] [CrossRef]
- Lyu, Y.; Fagherazzi, S.; Tan, G.; Zheng, S.; Feng, Z.; Han, S.; Shu, C. Hydrodynamic and geomorphic adjustments of channel bars in the Yichang-Chenglingji Reach of the Middle Yangtze River in response to the Three Gorges Dam operation. Catena 2020, 193, 11. [Google Scholar] [CrossRef]
- Esseen, P.-A. Strong influence of landscape structure on hair lichens in boreal forest canopies. Can. J. For. Res. 2019, 49, 994–1003. [Google Scholar] [CrossRef]
- Ostman, O.; Mellbrand, K.; Hamback, P.A. Edge or dispersal effects—Their relative importance on arthropod densities on small islands. Basic Appl. Ecol. 2009, 10, 475–484. [Google Scholar] [CrossRef]
- Zeng, Q.; Shi, L.; Wen, L.; Chen, J.; Duo, H.; Lei, G. Gravel Bars Can Be Critical for Biodiversity Conservation: A Case Study on Scaly-Sided Merganser in South China. PLoS ONE 2015, 10, e0127387. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xu, Y.J. Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology 2018, 300, 31–44. [Google Scholar] [CrossRef]
- Gilvear, D.; Willby, N. Channel dynamics and geomorphic variability as controls on gravel bar vegetation; River Tummel, Scotland. River Res. Appl. 2006, 22, 457–474. [Google Scholar] [CrossRef]
- Hupp, C.R.; Rinaldi, M. Riparian Vegetation Patterns in Relation to Fluvial Landforms and Channel Evolution Along Selected Rivers of Tuscany (Central Italy). Ann. Assoc. Am. Geogr. 2007, 97, 12–30. [Google Scholar] [CrossRef]
- Elliott, B.L.; Kerley, G.I.H.; McLachlan, A. Patterns of development and succession of vegetated hummocks in slacks of the Alexandria coastal dune field, South Africa. J. Coast. Conserv. 2000, 6, 79–88. [Google Scholar] [CrossRef]
- Tal, M.; Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 2007, 35, 347–350. [Google Scholar] [CrossRef]
- Dean, D.J.; Topping, D.J.; Schmidt, J.C.; Griffiths, R.E.; Sabol, T.A. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads. J. Geophys. Res. Earth Surf. 2016, 121, 82–110. [Google Scholar] [CrossRef] [Green Version]
- Slowik, M.; Dezso, J.; Marciniak, A.; Toth, G.; Kovacs, J. Evolution of river planforms downstream of dams: Effect of dam construction or earlier human-induced changes? Earth Surf. Process. Landf. 2018, 43, 2045–2063. [Google Scholar] [CrossRef]
- Renofalt, B.M.; Jansson, R.; Nilsson, C. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw. Biol. 2010, 55, 49–67. [Google Scholar] [CrossRef]
- Pan, B.; Yuan, J.; Zhang, X.; Wang, Z.; Chen, J.; Lu, J.; Yang, W.; Li, Z.; Zhao, N.; Xu, M. A review of ecological restoration techniques in fluvial rivers. Int. J. Sediment Res. 2016, 31, 110–119. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, S.; Yi, Y.; Yu, G. Principles of river training and management. Int. J. Sediment Res. 2007, 22, 247–262. [Google Scholar]
- International Commission on Large Dams. General Synthesis. World Regist. Dams 2020. Available online: https://www.icold-cigb.org/GB/world_register/general_synthesis.asp (accessed on 12 October 2021).
- Hand, B.K.; Flint, C.G.; Frissell, C.A.; Muhlfeld, C.C.; Devlin, S.P.; Kennedy, B.P.; Crabtree, R.L.; McKee, W.A.; Luikart, G.; Stanford, J.A. A social–ecological perspective for riverscape management in the Columbia River Basin. Front. Ecol. Environ. 2018, 16, S23–S33. [Google Scholar] [CrossRef] [Green Version]
- Mallik, A.U.; Richardson, J.S. Riparian vegetation change in upstream and downstream reaches of three temperate rivers dammed for hydroelectric generation in British Columbia, Canada. Ecol. Eng. 2009, 35, 810–819. [Google Scholar] [CrossRef]
- Birken, A.S.; Cooper, D.J. Processes of Tamarix invasion and floodplain development along the lower Green River, Utah. Ecol. Appl. 2006, 16, 1103–1120. [Google Scholar] [CrossRef]
- Merritt, D.M.; Poff, N.L. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers. Ecol. Appl. 2010, 20, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Schelle, P.; Collier, U.; Pittock, J. Rivers at risk: Dams and the future of freshwater ecosystems, World wildlife fund (WWF). In Proceedings of the 7th International River Symposium, Brisbane, Australia, 4 September 2004. [Google Scholar]
- Mueller, E.R.; Grams, P.E.; Schmidt, J.C.; Hazel, J.E.; Alexander, J.S.; Kaplinski, M. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin. Geomorphology 2014, 226, 65–75. [Google Scholar] [CrossRef]
- McCoy-Sulentic, M.E.; Kolb, T.E.; Merritt, D.M.; Palmquist, E.; Ralston, B.E.; Sarr, D.A.; Shafroth, P.B. Changes in Community-Level Riparian Plant Traits over Inundation Gradients, Colorado River, Grand Canyon. Wetlands 2017, 37, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Sankey, J.B.; Ralston, B.E.; Grams, P.E.; Schmidt, J.C.; Cagney, L.E. Riparian vegetation, Colorado River, and climate: Five decades of spatiotemporal dynamics in the Grand Canyon with river regulation. J. Geophys. Res.-Biogeosci. 2015, 120, 1532–1547. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.E.; Schmidt, J.C.; Ayers, T.J.; Brown, B.T. Flow regulation, geomorphology, and Colorado-River marsh development in the grand canyon, Arizona. Ecol. Appl. 1995, 5, 1025–1039. [Google Scholar] [CrossRef]
- Casado, A.; Peiry, J.-l.; Campo, A.M. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina. Geomorphology 2016, 268, 21–34. [Google Scholar] [CrossRef] [Green Version]
- New, T.; Xie, Z. Impacts of large dams on riparian vegetation: Applying global experience to the case of China’s Three Gorges Dam. Biodivers. Conserv. 2008, 17, 3149–3163. [Google Scholar] [CrossRef]
- Zhu, G.; Li, Y.; Sun, Z.; Kanae, S. Response of vegetation to submergence along Jingjiang Reach of the Yangtze River. PLoS ONE 2021, 16, e0251015. [Google Scholar] [CrossRef] [PubMed]
- Hooke, J.M.; Yorke, L. Channel bar dynamics on multi-decadal timescales in an active meandering river. Earth Surf. Process. Landf. 2011, 36, 1910–1928. [Google Scholar] [CrossRef]
- Zheng, S.; Xu, Y.J.; Cheng, H.; Wang, B.; Xu, W.; Wu, S. Riverbed erosion of the final 565 kilometers of the Yangtze River (Changjiang) following construction of the Three Gorges Dam. Sci. Rep. 2018, 8, 11. [Google Scholar] [CrossRef]
- Hudson, P.F.; van der Hout, E.; Verdaasdonk, M. (Re)Development of fluvial islands along the lower Mississippi River over five decades, 1965–2015. Geomorphology 2019, 331, 78–91. [Google Scholar] [CrossRef]
- Zheng, S. Reflections on the Three Gorges Project since Its Operation. Engineering 2016, 2, 389–397. [Google Scholar] [CrossRef]
- Hu, F.; Ge, J.; Lv, S.B.; Li, Y.F.; Li, Z.J.; Yuan, M.; Chen, Z.; Liu, Y.M.; Li, Y.S.; Ross, A.G.; et al. Distribution pattern of the snail intermediate host of schistosomiasis japonica in the Poyang Lake region of China. Infect. Dis. Poverty 2019, 8, 23. [Google Scholar] [CrossRef]
- Liu, J. Evolution Processes of Mid-Channel Bars in the Middle and Lower Yangtze River and Xiang River. Master’s Thesis, Changsha University of Science & Technology, Changsha, China, 2018. (In Chinese). [Google Scholar]
- Wen, Z.; Yang, H.; Zhang, C.; Shao, G.; Wu, S. Remotely Sensed Mid-Channel Bar Dynamics in Downstream of the Three Gorges Dam, China. Remote. Sens. 2020, 12, 409. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Z.; Jia, Y.; Li, W. Evolution analysis of channel bars in the middle and lower Yangtze river before and after impoundment of Three Gorges Reservoir. Resour. Environ. Yangtze Basin 2015, 24, 65–73. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Finlayson, B.; Chen, J.; Yin, D. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the middle Yangtze (Changjiang) River, China. Geology 2010, 38, 1043–1046. [Google Scholar] [CrossRef]
- Tang, Z.; Qiao, X.; Fang, J. Species-area relationship in biological communities. Biodivers. Sci. 2009, 17, 549–559. (In Chinese) [Google Scholar] [CrossRef]
- Tjorve, E. Shapes and functions of species-area curves: A review of possible models. J. Biogeogr. 2003, 30, 827–835. [Google Scholar] [CrossRef]
- Chapman, K.A.; Best, R.J.; Smith, M.E.; Mueller, E.R.; Grams, P.E.; Parnell, R.A. Estimating the contribution of tributary sand inputs to controlled flood deposits for sandbar restoration using elemental tracers, Colorado River, Grand Canyon National Park, Arizona. Geol. Soc. Am. Bull. 2021, 133, 1141–1156. [Google Scholar] [CrossRef]
- Jourdain, C.; Claude, N.; Antoine, G.; Tassi, P.; Cordier, F. Influence of flood regime on riparian vegetation dynamics in rivers with alternate bars. In Ninth International Conference on Fluvial Hydraulics; Paquier, A., Riviere, N., Eds.; E3S Web of Conferences; E D P Sciences: Les Ulis, France, 2018; Volume 40. [Google Scholar]
- Khaddor, I.; Achab, M.; Soumali, M.R.; Benjbara, A.; Alaoui, A.H. The Impact of the Construction of a Dam on Flood Management. Civ. Eng. J. 2021, 7, 343–356. [Google Scholar] [CrossRef]
- Gao, X.; Fujiwara, M.; Winemiller, K.O.; Lin, P.; Li, M.; Liu, H. Regime shift in fish assemblage structure in the Yangtze River following construction of the Three Gorges Dam. Sci. Rep. 2019, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Tang, X.; Tang, F.; Yang, Y. Spatial-temporal evolution of landscape pattern in the middle and lower reaches ofthe Yangtze River basin from 1995 to 2015. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 185–194. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Liu, J.T. Impacts of large dams on downstream fluvial sedimentation: An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). J. Hydrol. 2013, 480, 10–18. [Google Scholar] [CrossRef]
- Ham, D.G.; Church, M. Bed-material transport estimated from channel morphodynamics: Chilliwack River, British Columbia. Earth Surf. Process. Landf. 2000, 25, 1123–1142. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Z.; Mei, X.; Lou, Y.; Wei, W.; Ge, Z. Immediately downstream effects of Three Gorges Dam on channel sandbars morphodynamics between Yichang-Chenglingji Reach of the Changjiang River, China. J. Geogr. Sci. 2018, 28, 629–646. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, H.-Y.; Wang, W.; Tseng, Y.-H.; Chiu, C.-A.; Kuo, C.-C.; Tsai, S.-T. Tree mortality in response to typhooninduced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan. PLoS ONE 2018, 13, e0190832. [Google Scholar] [CrossRef] [Green Version]
- Lomolino, M.V. Ecology’s most general, yet protean pattern: The species-area relationship. J. Biogeogr. 2000, 27, 17–26. [Google Scholar] [CrossRef]
- Wang, Y.; Rhoads, B.L.; Wang, D.; Wu, J.; Zhang, X. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. J. Hydrol. 2018, 558, 184–195. [Google Scholar] [CrossRef]
- Lou, Y.; Mei, X.; Dai, Z.; Wang, J.; Wei, W. Evolution of the mid-channel bars in the middle and lower reaches of the Changjiang (Yangtze) River from 1989 to 2014 based on the Landsat satellite images: Impact of the Three Gorges Dam. Environ. Earth Sci. 2018, 77, 18. [Google Scholar] [CrossRef]
- Lai, X.; Yin, D.; Finlayson, B.L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z. Will river erosion below the Three Gorges Dam stop in the middle Yangtze? J. Hydrol. 2017, 554, 24–31. [Google Scholar] [CrossRef]
High Spatial Resolution Images | Landsat Images | ||||
---|---|---|---|---|---|
Source | Acquisition Date | Sensor | Path | Row | Acquisition Date |
PlanetScope | 10 December 2013 | Landsat 8 | 119 | 038 | 10 December 2013 |
PlanetScope | 1 April 2016 | Landsat 8 | 120 | 038 | 28 March 2016 |
PlanetScope | 19 December 2017 | Landsat 8 | 121 | 039 | 19 December 2017 |
PlanetScope | 1 March 2016 | Landsat 8 | 123 | 039 | 1 March 2016 |
PlanetScope | 15 January 2014 | Landsat 8 | 123 | 040 | 23 January 2014 |
PlanetScope | 21 March 2015 | Landsat 8 | 124 | 039 | 22 March 2015 |
PlanetScope | 4 December 2016 | Landsat 8 | 124 | 039 | 5 December 2016 |
PlanetScope | 31 December 2015 | Landsat 8 | 125 | 039 | 26 December 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wen, Z.; Huang, Y.; Yi, X.; Ma, M.; Liao, T.; Wu, S. Impacts of Dam Operation on Vegetation Dynamics of Mid-Channel Bars in the Mid-Lower Yangtze River, China. Remote Sens. 2021, 13, 4190. https://doi.org/10.3390/rs13204190
Zhou X, Wen Z, Huang Y, Yi X, Ma M, Liao T, Wu S. Impacts of Dam Operation on Vegetation Dynamics of Mid-Channel Bars in the Mid-Lower Yangtze River, China. Remote Sensing. 2021; 13(20):4190. https://doi.org/10.3390/rs13204190
Chicago/Turabian StyleZhou, Xu, Zhaofei Wen, Yuanyang Huang, Xuemei Yi, Maohua Ma, Tao Liao, and Shengjun Wu. 2021. "Impacts of Dam Operation on Vegetation Dynamics of Mid-Channel Bars in the Mid-Lower Yangtze River, China" Remote Sensing 13, no. 20: 4190. https://doi.org/10.3390/rs13204190
APA StyleZhou, X., Wen, Z., Huang, Y., Yi, X., Ma, M., Liao, T., & Wu, S. (2021). Impacts of Dam Operation on Vegetation Dynamics of Mid-Channel Bars in the Mid-Lower Yangtze River, China. Remote Sensing, 13(20), 4190. https://doi.org/10.3390/rs13204190