Investigating Wintertime Cloud Microphysical Properties and Their Relationship to Air Mass Advection at Ny-Ålesund, Svalbard Using the Synergy of a Cloud Radar–Ceilometer–Microwave Radiometer
Abstract
:1. Introduction
2. Measurements and Analysis
3. Results and Discussion
3.1. Wintertime Cloud Microphysical Properties at Ny-Ålesund, Svalbard
3.2. Cloud Microphysical Properties According to Warm and Cold Air Mass Advection
3.3. Cloud Longwave Effect: Warm vs. Cold Air Mass Advection
4. Conclusions
- The liquid cloud fraction (CFliq) was less than 2%, whereas the ice cloud fraction (CFice) predominantly exceeded 10% below 6 km during the winter months (November–February). The LWC of mixed-phase clouds (LWCmix), which predominantly exist in the boundary layer (CFmix: 10–30%), was approximately four times higher than that of liquid clouds (LWCliq).
- Eighteen selected cases of warm air mass advection () were closely linked with strong southerly/southwesterly winds, whereas northerly winds brought cold and dry air masses () to the study area.
- The total CF of cases showed a peak around 0.5 km (~60%) due to high CFmix (~30%), and was approximately 20–40% above 2 km altitude. Elevated values of LWC and IWC during cases can be attributable to the presence of mixed-phase clouds in the boundary layer and ice clouds in the middle troposphere. Consistently, the re of ice particles in cases was approximately 5–10 μm larger than that of cases at all altitudes.
- Compared to cloud-free conditions, downward longwave (DLW) fluxes increased by 33% (69 W m−2) and 16% (26 W m−2) during and cases, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curry, J.A.; Schramm, J.L.; Rossow, W.B.; Randall, D. Overview of Arctic cloud and radiation characteristics. J. Clim. 1996, 9, 1731–1764. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.E.; Chapman, W.L. Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Clim. 1998, 11, 3030–3045. [Google Scholar] [CrossRef]
- Morrison, H.; De Boer, G.; Feingold, G.; Harrington, J.; Shupe, M.D.; Sulia, K. Resilience of persistent Arctic mixed-phase clouds. Nature Geosci. 2012, 5, 11–17. [Google Scholar] [CrossRef]
- Intrieri, J.M.; Fairall, C.W.; Shupe, M.D.; Persson, P.O.G.; Andreas, E.L.; Guest, P.S.; Moritz, R.E. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. Oceans 2002, 107, SHE-13. [Google Scholar] [CrossRef]
- Kay, J.E.; Gettelman, A. Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res. Atmos. 2009, 114, D18204. [Google Scholar] [CrossRef]
- Miller, N.B.; Shupe, M.D.; Cox, C.J.; Walden, V.P.; Turner, D.D.; Steffen, K. Cloud radiative forcing at Summit, Greenland. J. Clim. 2015, 28, 6267–6280. [Google Scholar] [CrossRef] [Green Version]
- Shupe, M.D.; Intrieri, J.M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 2004, 17, 616–628. [Google Scholar] [CrossRef]
- Dong, X.; Xi, B.; Crosby, K.; Long, C.N.; Stone, R.S.; Shupe, M.D. A 10-year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res. Atmos. 2010, 115, 115. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Recent extreme Arctic temperatures are due to a split polar vortex. J. Clim. 2016, 29, 5609–5616. [Google Scholar] [CrossRef]
- Wei, T.; Ding, M.; Wu, B.; Lu, C.; Wang, S. Variations in temperature-related extreme events (1975–2014) in Ny-Ålesund, Svalbard. Atmos. Sci. Lett. 2016, 17, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Dahlke, S.; Maturilli, M. Contribution of Atmospheric Advection to the Amplified Winter Warming in the Arctic North Atlantic Region. Adv. Meteorol. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.M.; Hong, J.Y.; Jun, S.Y.; Zhang, X.; Kwon, H.; Kim, S.J.; Kim, J.H.; Kim, S.W.; Kim, H.K. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep. 2017, 7, 40051. [Google Scholar] [CrossRef]
- Maturilli, M.; Kayser, M. Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record. Theor. Appl. Clim. 2017, 130, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rinke, A.; Maturilli, M.; Graham, R.M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S.R.; Moore, J.C. Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett. 2017, 12, 094006. [Google Scholar] [CrossRef]
- Yeo, H.; Park, S.-J.; Kim, B.-M.; Shiobara, M.; Kim, S.-W.; Kwon, H.; Kim, J.-H.; Jeong, J.-H.; Park, S.S.; Choi, T. The observed relationship of cloud to surface longwave radiation and air temperature at Ny-Ålesund, Svalbard. Tellus B Chem. Phys. Meteorol. 2018, 70, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yamanouchi, T. Arctic warming by cloud radiation enhanced by moist air intrusion observed at Ny-Ålesund, Svalbard. Polar Sci. 2019, 21, 110–116. [Google Scholar] [CrossRef]
- Gierens, R.; Kneifel, S.; Shupe, M.D.; Ebell, K.; Maturilli, M.; Löhnert, U. Low-level mixed-phase clouds in a complex Arctic environment. Atmos. Chem. Phys. 2020, 20, 3459–3481. [Google Scholar] [CrossRef] [Green Version]
- Mioche, G.; Jourdan, O.; Delanoë, J.; Gourbeyre, C.; Febvre, G.; Dupuy, R.; Monier, M.; Szczap, F.; Schwarzenboeck, A.; Gayet, J.-F. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas. Atmos. Chem. Phys. 2017, 17, 12845–12869. [Google Scholar] [CrossRef] [Green Version]
- Shupe, M.D.; Walden, V.P.; Eloranta, E.; Uttal, T.; Campbell, J.R.; Starkweather, S.M.; Shiobara, M. Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteorol. Clim. 2011, 50, 626–644. [Google Scholar] [CrossRef] [Green Version]
- Mioche, G.; Jourdan, O.; Ceccaldi, M.; Delanoë, J. Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: A study based on spaceborne active remote sensing. Atmos. Chem. Phys. 2015, 15, 2445–2461. [Google Scholar] [CrossRef] [Green Version]
- Ebell, K.; Nomokonova, T.; Maturilli, M.; Ritter, C. Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations. J. Appl. Meteorol. Clim. 2020, 59, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Nomokonova, T.; Ebell, K.; Löhnert, U.; Maturilli, M.; Ritter, C. The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund. Atmos. Chem. Phys. 2020, 20, 5157–5173. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Hogan, R.J.; O’connor, E.J.; Bouniol, D.; Brooks, M.E.; Delanoë, J.; Donovan, D.P.; Eastment, J.D.; Gaussiat, N.; Goddard, J.W.F.; et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Am. Meteorol. Soc. 2007, 88, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Wendisch, M.; Brückner, M.; Burrows, J.; Crewell, S.; Dethloff, K.; Ebell, K.; Lüpkes, C.; Macke, A.; Notholt, J.; Quaas, J. Understanding causes and effects of rapid warming in the Arctic. Eos 2017, 98. [Google Scholar] [CrossRef]
- Küchler, N.; Kneifel, S.; Löhnert, U.; Kollias, P.; Czekala, H.; Rose, T. A W-Band radar–radiometer system for accurate and continuous monitoring of clouds and precipitation. J. Atmos. Ocean. Technol. 2017, 34, 2375–2392. [Google Scholar] [CrossRef]
- Maturilli, M.; Ebell, K. Twenty-five years of cloud base height measurements by ceilometer in Ny-Ålesund, Svalbard. Earth Syst. Sci. Data 2018, 10, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Preißler, J.; Martucci, G.; Saponaro, G.; Ovadnevaite, J.; Vaishya, A.; Kolmonen, P.; Ceburnis, D.; Sogacheva, L.; de Leeuw, G.; O’Dowd, C. Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland. J. Geophys. Res. Atmos. 2016, 121, 14538–14557. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, J.M.; Shupe, M.D.; Uttal, T.; McCarty, B.J. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. Oceans 2002, 107, SHE-5. [Google Scholar] [CrossRef]
- Crewell, S.; Löhnert, U. Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy. Radio Sci. 2003, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Löhnert, U.; Crewell, S. Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics. Radio Sci. 2003, 38. [Google Scholar] [CrossRef] [Green Version]
- Rose, T.; Crewell, S.; Löhnert, U.; Simmer, C. A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmos. Res. 2005, 75, 183–200. [Google Scholar] [CrossRef]
- Nomokonova, T.; Ritter, C.; Ebell, K. HATPRO Microwave Radiometer Measurements at AWIPEV, Ny-Ålesund (2016–2018); PANGAEA: Bremen, Germany, 2019. [Google Scholar] [CrossRef]
- Hogan, R.J.; O’Connor, E.J. Facilitating Cloud Radar and Lidar Algorithms: The Cloudnet Instrument Synergy/Target Categorization Product. Cloudnet Documentation, 2004, 14. Available online: http://www.met.rdg.ac.uk/clouds/publications/categorization.pdf (accessed on 26 June 2021).
- Nomokonova, T.; Ebell, K.; Löhnert, U.; Maturilli, M.; Ritter, C.; O’Connor, E. Statistics on clouds and their relation to thermodynamic conditions at Ny-Ålesund using ground-based sensor synergy. Atmos. Chem. Phys. 2019, 19, 4105–4126. [Google Scholar] [CrossRef] [Green Version]
- Nomokonova, T.; Ebell, K. Cloud Microphysical Properties Retrieved from Ground-Based Remote Sensing at Ny-Ålesund (10 June 2016–8 October 2018); University of Cologne, PANGAEA: Bremen, Germany, 2019. [Google Scholar] [CrossRef]
- Hogan, R.J.; Mittermaier, M.P.; Illingworth, A.J. The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteorol. Clim. 2006, 45, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Frisch, S.; Shupe, M.; Djalalova, I.; Feingold, G.; Poellot, M. The retrieval of stratus cloud droplet effective radius with cloud radars. J. Atmos. Ocean. Technol. 2002, 19, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Miles, N.L.; Verlinde, J.; Clothiaux, E.E. Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci. 2000, 57, 295–311. [Google Scholar] [CrossRef]
- Delanoë, J.; Protat, A.; Bouniol, D.; Heymsfield, A.; Bansemer, A.; Brown, P. The characterization of ice cloud properties from Doppler radar measurements. J. Appl. Meteorol. Clim. 2007, 46, 1682–1698. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, J.M.; Shupe, M.D. Characteristics and radiative effects of diamond dust over the western Arctic Ocean region. J. Clim. 2004, 17, 2953–2960. [Google Scholar] [CrossRef]
- Shupe, M.D. Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteorol. Clim. 2011, 50, 645–661. [Google Scholar] [CrossRef]
- Fukuta, N.; Takahashi, T. The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci. 1999, 56, 1963–1979. [Google Scholar] [CrossRef] [Green Version]
- Zuidema, P.; Baker, B.; Han, Y.; Intrieri, J.; Key, J.; Lawson, P.; Matrosov, S.; Shupe, M.; Stone, R.; Uttal, T. An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci. 2005, 62, 160–176. [Google Scholar] [CrossRef]
- Verlinde, J.; Harrington, J.Y.; McFarquhar, G.; Yannuzzi, V.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M.; Mather, J.H. The mixed-phase Arctic cloud experiment. Bull. Am. Meteorol. Soc. 2007, 88, 205–222. [Google Scholar] [CrossRef] [Green Version]
- Shupe, M.D.; Uttal, T.; Matrosov, S.Y. Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteorol. 2005, 44, 1544–1562. [Google Scholar] [CrossRef] [Green Version]
- Wegener, A. Thermodynamik der Atmosphäre; J.A. Barth: Leipzig, Germany, 1911. [Google Scholar]
- Bergeron, T. On the physics of clouds and precipitation. In Procès-Verbaux de l’Association de Météorologie; International Union of Geodesy and Geophysics: Potsdam, Germany, 1935; pp. 156–178. [Google Scholar]
- Findeisen, W. Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteorol. Z. 1938, 55, 121–133. [Google Scholar]
- Curry, J.; Herman, G. Relationships between large-scale heat and moisture budgets and the occurrence of Arctic stratus clouds. Mon. Weather Rev. 1985, 113, 1441–1457. [Google Scholar] [CrossRef]
- Johansson, E.; Devasthale, A.; Tjernström, M.; Ekman, A.M.; L’Ecuyer, T. Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett. 2017, 44, 2527–2536. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Cassano, J.J. Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Eldevik, T.; Risebrobakken, B.; Bjune, A.E.; Andersson, C.; Birks, H.J.B.; Dokken, T.M.; Drange, H.; Glessmer, M.S.; Li, C.; Nilsen, J.E.Ø. A brief history of climate–the northern seas from the Last Glacial Maximum to global warming. Quat. Sci. Rev. 2014, 106, 225–246. [Google Scholar] [CrossRef] [Green Version]
- Shupe, M.D.; Matrosov, S.Y.; Uttal, T. Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci. 2006, 63, 697–711. [Google Scholar] [CrossRef]
- De Boer, G.; Eloranta, E.W.; Shupe, M.D. Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations. J. Atmos. Sci. 2009, 66, 2874–2887. [Google Scholar] [CrossRef] [Green Version]
- Mewes, D.; Jacobi, C. Heat transport pathways into the Arctic and their connections to surface air temperatures. Atmos. Chem. Phys. 2019, 19, 3927–3937. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Key, J.R.; Vavrus, S.; Woods, C. Time evolution of the cloud response to moisture intrusions into the Arctic during winter. J. Clim. 2018, 31, 9389–9405. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.V.; Rangno, A.L. Ice particle concentrations in clouds. J. Atmos. Sci. 1985, 42, 2523–2549. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.V.; Rangno, A.L. Microstructures of low and middle-level clouds over the Beaufort Sea. Q. J. R. Meteorol. Soc. 1998, 124, 2035–2071. [Google Scholar] [CrossRef]
- Maturilli, M. Basic and Other Measurements of Radiation at Station Ny-Ålesund (2006-05 Et Seq); Alfred Wegener Institute–Research Unit Potsdam, PANGAEA: Bremen, Germany, 2020. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Maturilli, M. High Resolution Radiosonde Measurements from Station Ny-Ålesund (2017-04 Et Seq); Alfred Wegener Institute–Research Unit Potsdam, PANGAEA: Bremen, Germany, 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R.; Liu, Z.; Wang, X.; Vavrus, S.J. Cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Park, D.-S.R.; Lee, S.; Feldstein, S.B. Attribution of the Recent Winter Sea Ice Decline over the Atlantic Sector of the Arctic Ocean. J. Clim. 2015, 28, 4027–4033. [Google Scholar] [CrossRef]
- Jun, S.-Y.; Ho, C.-H.; Jeong, J.-H.; Choi, Y.-S.; Kim, B.-M. Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 68. [Google Scholar] [CrossRef] [Green Version]
- Woods, C.; Caballero, R. The role of moist intrusions in winter Arctic warming and sea ice decline. J. Clim. 2016, 29, 4473–4485. [Google Scholar] [CrossRef]
- Francis, J.A.; Hunter, E. New insight into the disappearing Arctic sea ice. Eos Trans. Am. Geophys. Union 2006, 87, 509–511. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Equation | Reference |
---|---|---|
Liquid water content (LWC) | Scaled adiabatic method using LWP from MWR | Illingworth et al. [23] |
Ice water content (IWC) | Hogan et al. [36] | |
Effective radius (liquid) | Frisch et al. [37] | |
Effective radius (ice) | Delanoë et al. [39] | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Park, S.-J.; Kim, J.-H.; Yeo, H.; Nam, J.; Jun, S.-Y.; Kim, B.-M.; Kim, S.-W. Investigating Wintertime Cloud Microphysical Properties and Their Relationship to Air Mass Advection at Ny-Ålesund, Svalbard Using the Synergy of a Cloud Radar–Ceilometer–Microwave Radiometer. Remote Sens. 2021, 13, 2529. https://doi.org/10.3390/rs13132529
Cho Y, Park S-J, Kim J-H, Yeo H, Nam J, Jun S-Y, Kim B-M, Kim S-W. Investigating Wintertime Cloud Microphysical Properties and Their Relationship to Air Mass Advection at Ny-Ålesund, Svalbard Using the Synergy of a Cloud Radar–Ceilometer–Microwave Radiometer. Remote Sensing. 2021; 13(13):2529. https://doi.org/10.3390/rs13132529
Chicago/Turabian StyleCho, Yeonsoo, Sang-Jong Park, Joo-Hong Kim, Huidong Yeo, Jihyun Nam, Sang-Yoon Jun, Baek-Min Kim, and Sang-Woo Kim. 2021. "Investigating Wintertime Cloud Microphysical Properties and Their Relationship to Air Mass Advection at Ny-Ålesund, Svalbard Using the Synergy of a Cloud Radar–Ceilometer–Microwave Radiometer" Remote Sensing 13, no. 13: 2529. https://doi.org/10.3390/rs13132529
APA StyleCho, Y., Park, S.-J., Kim, J.-H., Yeo, H., Nam, J., Jun, S.-Y., Kim, B.-M., & Kim, S.-W. (2021). Investigating Wintertime Cloud Microphysical Properties and Their Relationship to Air Mass Advection at Ny-Ålesund, Svalbard Using the Synergy of a Cloud Radar–Ceilometer–Microwave Radiometer. Remote Sensing, 13(13), 2529. https://doi.org/10.3390/rs13132529