Detection of Changes in Arable Chernozemic Soil Health Based on Landsat TM Archive Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanov, A.L.; Savin, I.Y.; Stolbovoy, V.S. The resource potential of Russian lands for crop farming. Dokl. Earth Sci. 2017, 473, 346–349. [Google Scholar] [CrossRef]
- Ivanov, A.L.; Shoba, S.A.; Stolbovoy, V.S. (Eds.) Unique State Register of Soil Resources of Russia; Version 1.0; Grif and Co.: Tula, Russia, 2014. [Google Scholar]
- Savin, I.Y.; Stolbovoy, V.S.; Avetyan, S.A.; Shishkonakova, E.A. Map of plowed soils of Russia. Dokuchaev Soil Bull. 2018, 94, 38–56. [Google Scholar] [CrossRef]
- Liu, X.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Abrukova, V.V.; Bukreev, D.A.; Vasenev, I.I.; Vaseneva, E.G.; Volodin, V.M.; Daineko, E.K.; Dudkin, V.M.; Ermakov, V.V.; Kozlovsky, F.I.; Konovalov, S.N.; et al. Agroecological Condition of the CEE Chernozems; VNIIZIZPE: Kursk, Russia, 1996. [Google Scholar]
- Chendev, Y.G.; Petin, A.N. Natural Changes and Technogenic Transformation of Environmental Components of the Old-Developed Regions (on the Example of Belgorod Region); Moscow State University: Moscow, Russia, 2006. [Google Scholar]
- Oldeman, L.R.; Hakkeling, R.T.A.; Sombroek, W.G. World Map of the Status of Human-Induced Soil Degradation: An explanatory Note (rev. ed.); UNEP and ISRIC: Wageningen, The Netherlands, 1991; Available online: https://isric.org/sites/default/files/isric_report_1990_07.pdf (accessed on 8 April 2020).
- Stolbovoi, V.S.; Savin, I.Y.; Sheremet, B.V.; Sizov, V.V.; Ovechkin, S.V. The geoinformation system on soil degradation in Russia. Eurasian Soil Sci. 1999, 32, 589–593. [Google Scholar]
- Lal, R. Global food security and nexus thinking. J. Soil Water Conserv. 2016, 71, 85A–90A. [Google Scholar] [CrossRef]
- Kharytonov, M.M.; Kroik, A.A.; Shupranova, L.V. Steppe Soils Buffer Capacity and the Multipollution Impact of Industrial Enterprises in Ukraine. In Multiple Stressors: A Challenge for the Future; Mothersill, C., Mosse, I., Seymour, C., Eds.; NATO Science for Peace and Security Series; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Soil Health. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 8 June 2021).
- ITPS FAO. Soil Letters. Towards a Definition of Soil Health. Available online: http://www.fao.org/publications/card/ru/c/CB1110EN/ (accessed on 8 June 2021).
- Methodological Recommendations for Comprehensive Monitoring of Soil and Agricultural Land Fertility in the Russian Federation; FSNU Rosinformagrotech: Moscow, Russia, 2014.
- Savin, I.Y.; Stolbovoy, V.S.; Ivanov, A.L.; Prudnikova, E.Y.; Zholev, A.V.; Voronin, A.Y. Technologies of Drawing and Updating of Soil Maps; Pero: Moscow, Russia, 2019. [Google Scholar]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef] [PubMed]
- Savin, I.Y.; Chendev, Y.G. Changes in time of the humus content in the arable forest-steppe soils. Pochvovedenie 1994, 5, 88–92. [Google Scholar]
- Savin, I.Y.; Chendev, Y.G. Reasons for long-term dynamics of NDVI (MODIS) averaged for arable lands of municipalities of Belgorod region. Sovrem. Probl. distantsionnogo zondirovaniya Zemli iz Kosm. 2018, 15, 137–143. [Google Scholar] [CrossRef]
- 20. Statistical Yearbook. Belgorod oblast 2019; Belgorodstat: Belgorod, Russia, 2019.
- Kiryushin, V.I.; Lukin, S.V.; Solovichenko, V.D.; Melnikov, V.I. Belgorod Model of Adaptive Landscape Agriculture; Konstanta: Belgorod, Russia, 2019. [Google Scholar]
- Solovichenko, V.D.; Lukin, S.V.; Lisetsky, F.N.; Goleusov, P.V. Red Book of Belgorod Region Soils; Belgorod State University Publishing House: Belgorod, Russia, 2007. [Google Scholar]
- Lukin, S.V. Agroecological Condition and Productivity of Belgorod Region Soils; CONSTANTA: Belgorod, Russia, 2016. [Google Scholar]
- Solovichenko, V.D. Fertility and Rational Use of the Belgorod Region Soils; Father’s House: Belgorod, Russia, 2005. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing transformations and their effect on multispectral recognition. Remote Sens. Environ. 1969, VI, 97–132. [Google Scholar]
- Belinaso, H.; Demattê, J.A.M.; Remerio, S.A. Soil spectral library and its use in soil classification. Rev. Bras. Ciência Solo 2010, 34, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.; Eshel, G.; Ben-Dor, E. Reflectance Spectroscopy as a Tool for Monitoring Contaminated Soils. Soil Contamination. Pascucci, S., Ed.; Available online: https://www.intechopen.com/books/soil-contamination/reflectance-spectroscopy-as-a-tool-for-monitoring-contaminated-soils (accessed on 6 June 2021).
- Lesaignoux, A.; Fabre, S.; Briottet, X. Influence of soil moisture content on spectral reflectance of bare soils in the 0.4–14 μm domain. Int. J. Remote. Sens. 2013, 34, 2268–2285. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Carmon, N.; Klement, A.; Ben-Dor, E.; Boruvka, L. Agricultural Soil Spectral Response and Properties Assessment: Effects of Measurement Protocol and Data Mining Technique. Remote. Sens. 2017, 9, 1078. [Google Scholar] [CrossRef] [Green Version]
- Kopačková, V.; Ben-Dor, E.; Carmon, N.; Notesco, G. Modelling diverse soil attributes with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine. Remote. Sens. 2017, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Orlov, D.S.; Sukhanova, N.I.; Rozanova, M.S. Spectral Reflectivity of Soils and Their Components; MSU: Moscow, Russia, 2001. [Google Scholar]
- Savin, I.Y. Effect of Heavy Rain on the Integral Reflectivity of the Black Earth Soils Surface. Pochvovedenie 1995, 8, 976–980. [Google Scholar]
- Medvedev, V.V. Physical properties and character of plough sole occurrence in different types of arable soils. Pochvovedenie 2011, 12, 1487–1495. [Google Scholar]
- Zinchenko, S.I.; Ryabov, D.A.; Zinchenko, V.S. Ecological aspects of transformation of agro-physical properties of agro-ecosystems of grey forest soil. Fundam. Stud. 2013, 11, 1877–1882. [Google Scholar]
- Mukha, V.D. Natural-Anthropogenic Evolution of Soils (General Regularities and Zonal Features); KolosS: Moscow, Russia, 2004. [Google Scholar]
- Ivanov, A.L.; Kust, G.S.; Donnik, I.M.; Bedritsky, A.I.; Bagirov, V.A.; Kozlov, D.N.; Savin, I.Y.; Asgerova, D.B.; Ayurzhanaev, A.A.; Babina, Y.V.; et al. Global Climate and Soil Cover of Russia: Desertification and Land Degradation, Institutional, Infrastructural, Technological Adaptation Measures (Agriculture and Forestry); National report, Tom. 2.; V.V. Dokuchaev Soil Science Institute: Moscow, Russia, 2019. [Google Scholar]
- Razumov, V.V.; Ivanov, A.L.; Savin, I.Y.; Shapovalov, D.A.; Razumova, N.V.; Bekkiev, M.Y.; Shagin, S.I.; Molchanov, E.N.; Kozlov, D.N. Overwetting and Waterlogging of Lands in Russian Regions; V.V. Dokuchaev Soil Science Institute: Moscow, Russia, 2018. [Google Scholar]
- Levchenko, E.A.; Lozbenev, N.L.; Kozlov, D.N. Diagnostics of the Intra-Landscape Differentiation of Hydromorphism of forest Steppe Soils within the Vorona and Tsna Rivers Interfluve of the Volga Upland. Vestnik Moskovskogo Universiteta. Seriya 5, Geografiya. 2019. Available online: https://vestnik5.geogr.msu.ru/jour/article/view/537/472 (accessed on 18 June 2021).
- Ovechkin, S.V.; Isaev, V.A. Periodic additional soil-ground moistening as a factor of the soil cover evolution. In Problems of Hydrology in Soil Fertility; Soil Institute of V.V. Dokuchaev: Moscow, Russia, 1985; pp. 56–65. [Google Scholar]
- Chendev, Y.G.; Tishkov, A.A.; Savin, I.Y.; Lebedeva, M.G.; Solovyov, A.B. The reaction of soils and other components of the natural environment on climatic changes of different periodicity in the south of the Central Russian Upland. Izv. Ross. Akad. Nauk. Seriya Geogr. 2020, 84, 427–440. [Google Scholar]
Soil Property Changes | Changes in Spectral Reflectance in Landsat TM5 Bands 1 | |||
---|---|---|---|---|
1 Band 450–520 nm | 2 Band 520–605 nm | 3 Band 630–690 nm | 4 Band 760–900 nm | |
no changes | = | = | = | = |
humus content increasing | = | - | - | - |
humus content declining | + | + | ++ | + |
humidity increasing | - | - | - | -- |
humidity declining | + | + | + | ++ |
carbonates content increasing | ++ | ++ | + | + |
carbonates content declining | -- | -- | - | = |
District | Analyzed Area, ha | Percent from Total Arable Lands Area | Share of Soils with Different Trends in Soil Humidity and Humus Content (in % of the Analyzed Area) | |||||
---|---|---|---|---|---|---|---|---|
No Change | Soil Humidity Growth | Soil Humidity Decrease | Humus Content Growth | Humus Content Decrease | Humus Content Decrease due to Erosion | |||
Alekseevsky | 66,251.52 | 81.91 | 96.62 | 0.12 | 0.00 | 2.15 | 0.41 | 0.69 |
Belgorodsky | 24,841.89 | 38.4 | 72.21 | 6.40 | 0.03 | 15.12 | 2.86 | 3.38 |
Borisovsky | 10,175.22 | 30.68 | 78.24 | 4.59 | 0.00 | 10.50 | 4.14 | 2.53 |
Valuysky | 49,486.95 | 78.42 | 96.13 | 0.23 | 0.00 | 2.57 | 0.58 | 0.49 |
Veidelevsky | 49,337.91 | 78.35 | 97.75 | 0.14 | 0.00 | 1.30 | 0.34 | 0.47 |
Volokonovsky | 41,280.84 | 70.73 | 96.80 | 0.15 | 0.00 | 2.01 | 0.43 | 0.61 |
Grayvoronsky | 15,308.19 | 31.24 | 53.03 | 15.31 | 0.01 | 22.97 | 5.57 | 3.10 |
Gubkin city | 1561.68 | 77.62 | 84.28 | 6.07 | 0.00 | 1.56 | 3.42 | 4.67 |
Gubkinsky | 46,884.42 | 66.12 | 86.52 | 9.33 | 0.00 | 2.87 | 0.71 | 0.57 |
Ivnyansky | 17,128.26 | 32.31 | 88.74 | 8.70 | 0.00 | 2.31 | 0.17 | 0.08 |
Korochansky | 40,116.06 | 62.23 | 80.15 | 18.13 | 0.00 | 1.40 | 0.18 | 0.13 |
Krasnensky | 26,110.35 | 71.36 | 92.52 | 3.19 | 0.02 | 2.66 | 0.78 | 0.82 |
Krasnogvardeysky | 56,704.86 | 82.39 | 95.79 | 0.83 | 0.00 | 2.03 | 0.59 | 0.76 |
Krasnoyaruzhsky | 10,384.2 | 39.3 | 71.47 | 5.88 | 0.00 | 15.59 | 3.42 | 3.64 |
Novooskolsky | 45,820.89 | 87.55 | 89.40 | 2.75 | 0.00 | 7.46 | 0.20 | 0.19 |
Prokhorovsky | 35,450.46 | 47.66 | 86.84 | 10.33 | 0.00 | 1.53 | 1.01 | 0.28 |
Rakityansky | 19,372.77 | 35.99 | 86.71 | 1.66 | 0.00 | 7.92 | 2.16 | 1.55 |
Rovensky | 58,961.52 | 82.45 | 97.89 | 0.11 | 0.00 | 1.10 | 0.38 | 0.52 |
Starooskolsky | 55,600.83 | 93.83 | 86.05 | 8.20 | 0.00 | 2.35 | 2.03 | 1.37 |
Chernyansky | 38,343.78 | 61.25 | 93.31 | 5.85 | 0.00 | 0.47 | 0.17 | 0.19 |
Shebekinsky | 55,820.34 | 72.77 | 89.77 | 6.58 | 0.01 | 3.19 | 0.24 | 0.21 |
Yakovlevsky | 14,562.99 | 24.92 | 73.32 | 11.94 | 0.00 | 11.76 | 1.55 | 1.43 |
Belgorod oblast | 77,9505.9 | 63.03 | 89.75 | 4.80 | 0.00 | 3.77 | 0.89 | 0.79 |
Soil Name (Russian Soil Classification Terms) | Analyzed Area, ha | Percent from Total Soil Area in the oblast | Share of Soils with Different Trends in Soil Humidity and Humus Content (in % of the Analyzed Area) | |||||
---|---|---|---|---|---|---|---|---|
No Change | Soil Humidity Growth | Soil Humidity Decrease | Humus Content Growth | Humus Content Decrease | Humus Content Decrease due to Erosion | |||
Grey forest soils | 4562.73 | 0.59 | 90.29 | 5.68 | 0.02 | 1.88 | 0.34 | 1.79 |
Dark-grey forest soils | 50,179.5 | 6.47 | 89.13 | 5.80 | 0.01 | 3.60 | 0.51 | 0.96 |
Chermozems podzolized | 38,548.71 | 4.97 | 85.21 | 8.05 | 0.01 | 3.87 | 1.81 | 1.06 |
Chernozems leached | 134,266.41 | 17.31 | 91.29 | 4.12 | 0.00 | 3.00 | 0.80 | 0.79 |
Chernozems typical | 214,417.53 | 27.65 | 88.51 | 5.37 | 0.00 | 4.25 | 1.18 | 0.68 |
Chernozems_ordinary | 8858.16 | 1.14 | 98.46 | 0.00 | 0.00 | 0.84 | 0.28 | 0.41 |
Chernozems_sodified | 35,483.67 | 4.58 | 94.35 | 2.05 | 0.00 | 2.15 | 0.25 | 1.20 |
Chernozems residually-carbonated | 35,391.33 | 4.56 | 87.48 | 5.77 | 0.00 | 5.29 | 0.37 | 1.08 |
Alluvial sods | 4809.78 | 0.62 | 80.97 | 12.29 | 0.00 | 3.57 | 2.54 | 0.62 |
Alluvial meadow-boggy | 8656.47 | 1.12 | 78.77 | 9.35 | 0.00 | 8.22 | 2.70 | 0.95 |
Chernozemic meadow | 9241.29 | 1.19 | 84.26 | 5.94 | 0.00 | 6.62 | 2.93 | 0.25 |
Meadow-chernozemic | 120.69 | 0.02 | 95.30 | 2.68 | 0.00 | 0.67 | 1.34 | 0.00 |
Solonetz | 7469.01 | 0.96 | 92.66 | 3.82 | 0.00 | 2.80 | 0.50 | 0.23 |
Chernozems typical carbonated | 157,027.41 | 20.25 | 92.22 | 3.67 | 0.00 | 3.00 | 0.47 | 0.64 |
Alluvial meadow carbonate and gley | 28,683.72 | 3.70 | 85.86 | 4.89 | 0.01 | 6.89 | 1.09 | 1.26 |
Ravine and gully complexes | 19,830.42 | 2.56 | 88.93 | 5.89 | 0.00 | 3.72 | 0.63 | 0.83 |
Sod-carbonate washed | 3546.18 | 0.46 | 89.10 | 4.87 | 0.00 | 3.84 | 0.14 | 2.06 |
Sod soils | 10,292.67 | 1.33 | 88.87 | 3.88 | 0.01 | 5.44 | 1.48 | 0.32 |
Boggy soils | 4058.1 | 0.52 | 94.41 | 0.40 | 0.00 | 4.01 | 1.14 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, I.; Prudnikova, E.; Chendev, Y.; Bek, A.; Kucher, D.; Dokukin, P. Detection of Changes in Arable Chernozemic Soil Health Based on Landsat TM Archive Data. Remote Sens. 2021, 13, 2411. https://doi.org/10.3390/rs13122411
Savin I, Prudnikova E, Chendev Y, Bek A, Kucher D, Dokukin P. Detection of Changes in Arable Chernozemic Soil Health Based on Landsat TM Archive Data. Remote Sensing. 2021; 13(12):2411. https://doi.org/10.3390/rs13122411
Chicago/Turabian StyleSavin, Igor, Elena Prudnikova, Yury Chendev, Anastasia Bek, Dmitry Kucher, and Petr Dokukin. 2021. "Detection of Changes in Arable Chernozemic Soil Health Based on Landsat TM Archive Data" Remote Sensing 13, no. 12: 2411. https://doi.org/10.3390/rs13122411
APA StyleSavin, I., Prudnikova, E., Chendev, Y., Bek, A., Kucher, D., & Dokukin, P. (2021). Detection of Changes in Arable Chernozemic Soil Health Based on Landsat TM Archive Data. Remote Sensing, 13(12), 2411. https://doi.org/10.3390/rs13122411