Summertime Continental Shallow Cumulus Cloud Detection Using GOES-16 Satellite and Ground-Based Stereo Cameras at the DOE ARM Southern Great Plains Site
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Determination of Clear-Sky Surface Reflectance
3.2. The GOES Simulator
3.3. Determination of ShCu Detection Threshold ∆R
4. Results
4.1. Dynamic and Best-Fit Constant ΔR
4.2. Cloud Size Distributions
4.3. Diurnal Cycles of Cloud Fraction and Cloud Size
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fast, J.D.; Berg, L.K.; Feng, Z.; Mei, F.; Newsom, R.; Sakaguchi, K.; Xiao, H. The Impact of Variable Land-Atmosphere Coupling on Convective Cloud Populations Observed During the 2016 HI-SCALE Field Campaign. J. Adv. Model. Earth Syst. 2019, 11, 2629–2654. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hagos, S.; Xiao, H.; Fast, J.D.; Feng, Z. Characterization of Surface Heterogeneity-Induced Convection Using Cluster Analysis. J. Geophys. Res. Atmos. 2020, 125, 1–16. [Google Scholar] [CrossRef]
- Fast, J.D.; Berg, L.K.; Alexander, L.; Bell, D.; D’Ambro, E.; Hubbe, J.; Kuang, C.; Liu, J.; Long, C.; Matthews, A.; et al. Overview of the hi-scale field campaign a new perspective on shallow convective clouds. Bull. Am. Meteorol. Soc. 2019, 100, 821–840. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Williams, I.N. Observational Evidence of State-Dependent Positive and Negative Land Surface Feedback on Afternoon Deep Convection Over the Southern Great Plains. Geophys. Res. Lett. 2020, 47, 1–9. [Google Scholar] [CrossRef]
- Tao, C.; Zhang, Y.; Tang, S.; Tang, Q.; Ma, H.Y.; Xie, S.; Zhang, M. Regional Moisture Budget and Land-Atmosphere Coupling Over the U.S. Southern Great Plains Inferred From the ARM Long-Term Observations. J. Geophys. Res. Atmos. 2019, 124, 10091–10108. [Google Scholar] [CrossRef]
- Lee, J.M.; Zhang, Y.; Klein, S.A. The effect of land surface heterogeneity and background wind on shallow cumulus clouds and the transition to deeper convection. J. Atmos. Sci. 2019, 76, 401–419. [Google Scholar] [CrossRef]
- Hartmann, D.L. Global Physical Climatology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780123285317. [Google Scholar]
- Berg, L.K.; Long, C.N.; Kassianov, E.I.; Chand, D.; Tai, S.L.; Yang, Z.; Riihimaki, L.D.; Biraud, S.C.; Tagestad, J.; Matthews, A.; et al. Fine-Scale Variability of Observed and Simulated Surface Albedo Over the Southern Great Plains. J. Geophys. Res. Atmos. 2020, 125, 1–14. [Google Scholar] [CrossRef]
- Riley, E.A.; Kleiss, J.M.; Riihimaki, L.D.; Long, C.N.; Berg, L.K.; Kassianov, E. Shallow cumuli cover and its uncertainties from ground-based lidar-radar data and sky images. Atmos. Meas. Tech. 2020, 13, 2099–2117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Klein, S.A. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci. 2010, 67, 2943–2959. [Google Scholar] [CrossRef]
- Zhang, Y.; Klein, S.A. Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: Investigation of diurnal-cycle observations collected at the ARM southern great plains site. J. Atmos. Sci. 2013, 70, 1297–1315. [Google Scholar] [CrossRef]
- Van Heerwaarden, C.C.; Mellado, J.P.; de Lozar, A. Scaling laws for the heterogeneously heated free convective boundary layer. J. Atmos. Sci. 2014, 71, 3975–4000. [Google Scholar] [CrossRef]
- Lareau, N.P.; Zhang, Y.; Klein, S.A. Observed boundary layer controls on shallow cumulus at the ARM Southern Great Plains site. J. Atmos. Sci. 2018, 75, 2235–2255. [Google Scholar] [CrossRef]
- Kassianov, E.I.; Riley, E.A.; Kleiss, J.M.; Riihimaki, L.D.; Berg, L.K. Macrophysical properties of continental shallow cumuli: Diurnal evolution. In Proceedings of the Remote Sensing of Clouds and the Atmosphere XXIV, Strasbourg, France, 9 October 2019; Comerón, A., Kassianov, E.I., Schäfer, K., Picard, R.H., Weber, K., Singh, U.N., Eds.; 2019; Volume 11152, p. 9. [Google Scholar]
- Dai, A.; Trenberth, K.E. The diurnal cycle and its depiction in the community climate system model. J. Clim. 2004. [Google Scholar] [CrossRef]
- Park, S.; Bretherton, C.S. The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J. Clim. 2009. [Google Scholar] [CrossRef]
- Smalley, K.M.; Rapp, A.D. The role of cloud size and environmental moisture in shallow cumulus precipitation. J. Appl. Meteorol. Climatol. 2020, 59, 535–550. [Google Scholar] [CrossRef]
- Rabin, R.M.; Martin, D.W. Satellite observations of shallow cumulus coverage over the central United States: An exploration of land use impact on cloud cover. J. Geophys. Res. Atmos. 1996, 101, 7149–7155. [Google Scholar] [CrossRef]
- Gambill, L.D.; Mecikalski, J.R. A Satellite-based summer convective cloud frequency analysis over the southeastern United States. J. Appl. Meteorol. Climatol. 2011, 50, 1756–1769. [Google Scholar] [CrossRef]
- Kollias, P.; Luke, E.; Oue, M.; Lamer, K. Agile Adaptive Radar Sampling of Fast-Evolving Atmospheric Phenomena Guided by Satellite Imagery and Surface Cameras. Geophys. Res. Lett. 2020, 47, 1–9. [Google Scholar] [CrossRef]
- Oue, M.; Kollias, P.; North, K.W.; Tatarevic, A.; Endo, S.; Vogelmann, A.M.; Gustafson, W.I. Estimation of cloud fraction profile in shallow convection using a scanning cloud radar. Geophys. Res. Lett. 2016, 43, 10,998–11,006. [Google Scholar] [CrossRef]
- Romps, D.M.; Öktem, R. Observing clouds in 4d with multiview stereophotogrammetry. Bull. Am. Meteorol. Soc. 2018, 99, 2575–2586. [Google Scholar] [CrossRef] [Green Version]
- Neggers, R.A.J.; Duynkerke, P.G.; Rodts, S.M.A. Shallow cumulus convection: A validation of large-eddy simulation against aircraft and Landsat observations. Q. J. R. Meteorol. Soc. 2003, 129, 2671–2696. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.K.; Welch, R.M.; Navar, M.S.; Berendes, T.A.; Chen, D.W. Cumulus cloud field morphology and spatial patterns derived from high spatial resolution Landsat imagery. J. Appl. Meteorol. 1990, 29, 1245–1267. [Google Scholar] [CrossRef] [Green Version]
- Romps, D.M.; Vogelmann, A.M. Methods for estimating 2D cloud size distributions from 1D observations. J. Atmos. Sci. 2017. [Google Scholar] [CrossRef]
- Rodts, S.M.A.; Duynkerke, P.G.; Jonker, H.J.J. Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci. 2003, 60, 1895–1912. [Google Scholar] [CrossRef]
- Cesana, G.; Del Genio, A.D.; Chepfer, H. The Cumulus and Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD). Earth Syst. Sci. Data 2019, 11, 1745–1764. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; Nair, U.S.; Welch, R.M.; Han, Q.; Zeng, J.; Su, W.; Kikuchi, T.; Lyons, T.J. Effects of land use in Southwest Australia: 1. Observations of cumulus cloudiness and energy fluxes. J. Geophys. Res. Atmos. 2003, 108, 1–20. [Google Scholar] [CrossRef]
- Nair, U.S.; Lawton, R.O.; Welch, R.M.; Pielke, R.A. Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Weather Rev. 2006, 134, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, J.R.; Mackenzie, W.M.; Koenig, M.; Muller, S. Cloud-top properties of growing cumulus prior to convective initiation as measured by meteosat second generation. Part I: Infrared fields. J. Appl. Meteorol. Climatol. 2010, 49, 521–534. [Google Scholar] [CrossRef]
- Sèze, G.; Belcour, C.; Desbois, M. Cloud cover analysis using spectral and spatial characteristics of meteosat images. Adv. Sp. Res. 1985, 5, 165–168. [Google Scholar] [CrossRef]
- Simpson, J.J.; Gobat, J.I. Improved cloud detection in GOES scenes over land. Remote Sens. Environ. 1995, 52, 36–54. [Google Scholar] [CrossRef]
- Ipe, A. Validation and Homogenization of Cloud Properties Retrievals for RMIB GERB/SEVIRI Scene Identification. In Proceedings of the International Symposium on Remote Sensing, Crete, Greece, 18 April 2003. [Google Scholar]
- Ipe, A.; Bertrand, C.; Clerbaux, N.; Dewitte, S.; Gonzalez, L. The GERB Edition 1 products SEVIRI scene identification. Remote Sens. Clouds Atmos. XII 2007, 6745, 674512. [Google Scholar] [CrossRef]
- Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Jedlovec, G.J.; Haines, S.L.; LaFontaine, F.J. Spatial and temporal varying thresholds for cloud detection in GOES imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Jedlovec, G. Automated Detection of Clouds in Satellite Imagery. Adv. Geosci. Remote Sens. 2009, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the goes-r series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Jiménez, P.A. Assessment of the GOES-16 clear sky mask product over the contiguous USA using CALIPSO retrievals. Remote Sens. 2020, 12, 1630. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Jewett, C.P.; Apke, J.M.; Carey, L.D. Analysis of cumulus cloud updrafts as observed with 1-min resolution super rapid scan GOES imagery. Mon. Weather Rev. 2016, 144, 811–830. [Google Scholar] [CrossRef]
- Pitts, K.; Seybold, M.; Daniels, J.; Carlisle, C. Geostationary Operational Environmental Satellite (GOES)—R Series ABI L2 Cloud and Moisture Imagery Readiness, Implementation and Management. 2020. Available online: https://www.goes-r.gov/products/RIMPs/RIMP_ABI-L2_CMI.pdf (accessed on 11 September 2020).
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the next-generation advanced baseline imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Book, D. GOES-R Series Data Book; Greenbelt, MD, USA, 2019. Available online: https://www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf (accessed on 11 September 2020).
- Berg, L.K.; Kassianov, E.I. Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Clim. 2008. [Google Scholar] [CrossRef]
- Clothiaux, E.E.; Ackerman, T.P.; Mace, G.G.; Moran, K.P.; Marchand, R.T.; Miller, M.A.; Martner, B.E. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteorol. 2000. [Google Scholar] [CrossRef]
- Kollias, P.; Clothiaux, E.E.; Ackerman, T.P.; Albrecht, B.A.; Widener, K.B.; Moran, K.P.; Luke, E.P.; Johnson, K.L.; Bharadwaj, N.; Mead, J.B.; et al. Development and Applications of ARM Millimeter-Wavelength Cloud Radars. Meteorol. Monogr. 2016. [Google Scholar] [CrossRef]
- Williams, C.; Johnson, K.; Giangrande, S.; Hardin, J.; Öktem, R.; Romps, D. Identifying Insects, Clouds, and Precipitation using Vertically Pointing Polarimetric Radar Doppler Velocity Spectra. Atmos. Meas. Tech. Discuss. 2021, 1–27. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Fu, G.; Rink, T.; Bah, K.; Wolf, W. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Cloud and Moisture Imagery Product; Version 3.0; College Park, MD, USA, 2012. Available online: https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Imagery.pdf (accessed on 11 September 2020).
- Wu, X.; Schmit, T. GOES-16 ABI Level 1b and Cloud and Moisture Imagery (CMI) Release Full Validation Data Quality Product Performance Guide for Data Users; College Park, MD, USA, 2020. Available online: https://www.star.nesdis.noaa.gov/GOESCal/docs/pdf/SOP/G17_ABI_L1b-CMI_Full_ValidationProductPerformanceGuide_20200731_v1.1.pdf (accessed on 11 September 2020).
- Heidinger, A.; Straka, W.C., III. Algorithm Theoretical Basis Document: ABI Cloud Mask; Technical Report; NOAA NESDIS Center for Satellite Applications and Research: College Park, MD, USA, 2012; Available online: https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Cloud_Mask.pdf (accessed on 11 September 2020).
- Theeuwes, N.E.; Barlow, J.F.; Teuling, A.J.; Grimmond, C.S.B.; Kotthaus, S. Persistent cloud cover over mega-cities linked to surface heat release. NPJ Clim. Atmos. Sci. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Teuling, A.J.; Taylor, C.M.; Meirink, J.F.; Melsen, L.A.; Miralles, D.G.; Van Heerwaarden, C.C.; Vautard, R.; Stegehuis, A.I.; Nabuurs, G.J.; De Arellano, J.V.G. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ipe, A.; Clerbaux, N.; Bertrand, C.; Dewitte, S.; Gonzalez, L. Pixel-scale composite top-of-the-atmosphere clear-sky reflectances for Meteosat-7 visible data. J. Geophys. Res. Atmos. 2003, 108, 1–7. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- USDA National Agricultural Statistics Service. Cropland Data Layer. Public Cropland Data Layer; USDA-NASS: Washington, DC, USA, 2018; Available online: https//nassgeodata.gmu.edu/CropScape/ (accessed on 11 September 2020).
- Bieliński, T. A parallax shift effect correction based on cloud height for geostationary satellites and radar observations. Remote Sens. 2020, 12, 365. [Google Scholar] [CrossRef]
- Bley, S.; Deneke, H.; Senf, F.; Scheck, L. Metrics for the evaluation of warm convective cloud fields in a large-eddy simulation with Meteosat images. Q. J. R. Meteorol. Soc. 2017, 143, 2050–2060. [Google Scholar] [CrossRef] [Green Version]
- Vicente, G.A.; Davenport, J.C.; Scofield, R.A. The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens. 2002, 23, 221–230. [Google Scholar] [CrossRef]
- Henken, C.C.; Schmeits, M.J.; Deneke, H.; Roebeling, R.A. Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu clouds. J. Appl. Meteorol. Climatol. 2011, 50, 1587–1600. [Google Scholar] [CrossRef]
- Roebeling, R.A.; Holleman, I. SEVIRI rainfall retrieval and validation using weather radar observations. J. Geophys. Res. 2009, 114, D21202. [Google Scholar] [CrossRef]
- Zhang, Y.; Klein, S.A.; Fan, J.; Chandra, A.S.; Kollias, P.; Xie, S.; Tang, S. Large-eddy simulation of shallow cumulus over land: A composite case based on ARM long-term observations at its Southern Great Plains site. J. Atmos. Sci. 2017, 74, 3229–3251. [Google Scholar] [CrossRef]
- McHardy, T.M.; Campbell, J.R.; Peterson, D.A.; Lolli, S.; Bankert, R.L.; Garnier, A.; Kuciauskas, A.P.; Surratt, M.L.; Marquis, J.W.; Miller, S.D.; et al. Advancing Maritime Transparent Cirrus Detection Using the Advanced Baseline Imager “Cirrus” Band. J. Atmos. Ocean. Technol. 2021, 1. [Google Scholar] [CrossRef]
- Malinowski, R.; Groom, G.; Schwanghart, W.; Heckrath, G. Detection and Delineation of Localized Flooding from WorldView-2 Multispectral Data. Remote Sens. 2015, 7, 14853–14875. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Zhang, Y.; Klein, S.A.; Wang, L.; Öktem, R.; Romps, D.M. Summertime Continental Shallow Cumulus Cloud Detection Using GOES-16 Satellite and Ground-Based Stereo Cameras at the DOE ARM Southern Great Plains Site. Remote Sens. 2021, 13, 2309. https://doi.org/10.3390/rs13122309
Tian J, Zhang Y, Klein SA, Wang L, Öktem R, Romps DM. Summertime Continental Shallow Cumulus Cloud Detection Using GOES-16 Satellite and Ground-Based Stereo Cameras at the DOE ARM Southern Great Plains Site. Remote Sensing. 2021; 13(12):2309. https://doi.org/10.3390/rs13122309
Chicago/Turabian StyleTian, Jingjing, Yunyan Zhang, Stephen A. Klein, Likun Wang, Rusen Öktem, and David M. Romps. 2021. "Summertime Continental Shallow Cumulus Cloud Detection Using GOES-16 Satellite and Ground-Based Stereo Cameras at the DOE ARM Southern Great Plains Site" Remote Sensing 13, no. 12: 2309. https://doi.org/10.3390/rs13122309
APA StyleTian, J., Zhang, Y., Klein, S. A., Wang, L., Öktem, R., & Romps, D. M. (2021). Summertime Continental Shallow Cumulus Cloud Detection Using GOES-16 Satellite and Ground-Based Stereo Cameras at the DOE ARM Southern Great Plains Site. Remote Sensing, 13(12), 2309. https://doi.org/10.3390/rs13122309