Modelling Spatial Heterogeneity in the Effects of Natural and Socioeconomic Factors, and Their Interactions, on Atmospheric PM2.5 Concentrations in China from 2000–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Processing
2.1.1. Annual Mean PM2.5 Concentrations
2.1.2. Influencing Factors
2.2. Methods
2.2.1. Geographical Detector Model
- q values of X1 and X2 obtained from equation 1 are expressed as q(X1) and q (X2);
- The two factor layers X1 and X2 are used for superposition. The new superposition factor layer after the superposition is X1∩X2, and the Equation (1) is used again to calculate the q value of X1∩X2 at the superposition factor layer, which is expressed as q(X1∩X2);
- According to the magnitude of q (X1), q (X2) and q (X1∩X2), it can be divided into five types of interaction; the specific comparison and corresponding interaction relationships are shown in Table A1.
2.2.2. Multiscale Geographically Weighted Regression Model
3. Results
3.1. Spatio-Temporal Patterns in PM2.5 Concentration
3.2. Correlation Analysis
3.3. Geographical Detector Model Analysis
3.3.1. Factor Detector Analysis
3.3.2. Interaction Detector Analysis
3.4. Multiscale Geographically Weighted Regression Model Analysis
4. Discussion
4.1. The Advantages of the MGWR Model in Quantifying the Relationship between Factors and PM2.5 Concentration
4.2. Drivers of PM2.5 Concentration in China
4.3. Interactions of PM2.5 Influencing Factors and Spatial Multiscale Relationships on PM2.5 Pollution Control in China
4.4. Limitations and Future Work Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Type of Interaction | Judging Description |
---|---|
Nonlinearly weakened | q(X1∩X2) < Min(q(X1), q(X2)) |
Univariate nonlinearly weakened | Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) |
Bivariate enhancement | q(X1∩X2) > Max(q(X1), q(X2)) |
Independent | q(X1∩X2) = q(X1) + q(X2) |
Nonlinearly enhanced | q(X1∩X2) > q(X1) + q(X2) |
Factors | PM2.5 | |||||
---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | |||
Natural factors | Terrain factors | ELE | −0.258 ** | −0.342 ** | −0.321 ** | −0.376 ** |
Vegetation factors | NDVI | −0.318 ** | −0.184 ** | −0.207 ** | −0.249 ** | |
PFOL | −0.276 ** | −0.196 ** | −0.244 ** | −0.253 ** | ||
PGRL | −0.29 ** | −0.392 ** | −0.363 ** | −0.417 ** | ||
Meteorological factors | PRE | −0.267 ** | −0.093 ** | −0.141 ** | −0.085 ** | |
TEM | 0.305 ** | 0.416 ** | 0.370 ** | 0.296 ** | ||
WIND | −0.156 ** | −0.273 ** | −0.186 ** | −0.505 ** | ||
Natural source factor | PUNL | 0.439 ** | 0.313 ** | 0.360 ** | 0.393 ** | |
Socioeconomic factors | Human socioeconomic activities factors | GDP | 0.054 ** | 0.186 ** | 0.155 ** | 0.103 ** |
POP | 0.101 ** | 0.289 ** | 0.159 ** | 0.165 ** | ||
NLI | 0.071 ** | 0.152 ** | 0.148 ** | 0.171 ** | ||
Human regional activities factors | PFAL | 0.137 ** | 0.284 ** | 0.251 ** | 0.275 ** | |
PCOL | 0.150 ** | 0.265 ** | 0.242 ** | 0.279 ** |
Factors | Year | ELE | NDVI | PFOL | PGRL | PRE | TEM | WIND | PUNL | GDP | POP | NLI | PFAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDVI | 2000 | 0.479 * | |||||||||||
2005 | 0.440 * | ||||||||||||
2010 | 0.427 * | ||||||||||||
2015 | 0.513 * | ||||||||||||
PFOL | 2000 | 0.349 * | 0.305 # | ||||||||||
2005 | 0.322 * | 0.251 * | |||||||||||
2010 | 0.343 * | 0.253 * | |||||||||||
2015 | 0.40 * | 0.289 # | |||||||||||
PGRL | 2000 | 0.266 # | 0.347 # | 0.298 * | |||||||||
2005 | 0.269 # | 0.348 # | 0.308 * | ||||||||||
2010 | 0.269 # | 0.320 # | 0.319 * | ||||||||||
2015 | 0.315 # | 0.404 # | 0.391 * | ||||||||||
PRE | 2000 | 0.573 * | 0.455 # | 0.444 # | 0.478 # | ||||||||
2005 | 0.473 * | 0.308 # | 0.285 * | 0.369 # | |||||||||
2010 | 0.467 * | 0.269 # | 0.289 * | 0.356 # | |||||||||
2015 | 0.552 * | 0.336 # | 0.367 * | 0.435 # | |||||||||
TEM | 2000 | 0.559 * | 0.551 # | 0.515 * | 0.398 # | 0.598 # | |||||||
2005 | 0.600 * | 0.503 # | 0.515 * | 0.429 # | 0.499 # | ||||||||
2010 | 0.586 * | 0.508 # | 0.534 * | 0.432 # | 0.540 # | ||||||||
2015 | 0.506 * | 0.478 * | 0.464 * | 0.393 # | 0.516 * | ||||||||
WIND | 2000 | 0.337 * | 0.474 * | 0.351 * | 0.185 * | 0.409 * | 0.588 * | ||||||
2005 | 0.394 * | 0.388 * | 0.329 * | 0.280 * | 0.456 * | 0.406 # | |||||||
2010 | 0.372 * | 0.366 * | 0.297 * | 0.251 * | 0.479 * | 0.417 * | |||||||
2015 | 0.465 # | 0.484 # | 0.4687 * | 0.427 # | 0.522 # | 0.501 # | |||||||
PUNL | 2000 | 0.420 * | 0.311 # | 0.299 # | 0.286 # | 0.452 # | 0.528 # | 0.421 * | |||||
2005 | 0.407 * | 0.265 # | 0.255 * | 0281 # | 0.315 # | 0.497 # | 0.360 * | ||||||
2010 | 0.413 * | 0.246 # | 0.263 * | 0.278 # | 0.297 # | 0.510 # | 0.368 * | ||||||
2015 | 0.472 * | 0.296 # | 0.296 # | 0.334 # | 0.358 # | 0.437 # | 0.477 # | ||||||
GDP | 2000 | 0.336 * | 0.376 * | 0.161 * | 0.226 * | 0.531 * | 0.484 * | 0.222 * | 0.340 * | ||||
2005 | 0.3673 * | 0.403 * | 0.236 * | 0.269 # | 0.452 * | 0.474 * | 0.286 * | 0.394 * | |||||
2010 | 0.368 * | 0.338 * | 0.210 * | 0.253 # | 0.432 * | 0.486 * | 0.247 * | 0.368 * | |||||
2015 | 0.386 * | 0.424 * | 0.239 * | 0.303 # | 0.474 * | 0.448 * | 0.471 * | 0.425 * | |||||
POP | 2000 | 0.338 * | 0.397 * | 0.195 * | 0.251 * | 0.551 * | 0.506 * | 0.272 * | 0.358 * | 0.106 * | |||
2005 | 0.376 * | 0.435 * | 0.282 * | 0.318 # | 0.466 * | 0.497 # | 0.340 * | 0.412 * | 0.186 # | ||||
2010 | 0.363 * | 0.382 * | 0.252 * | 0.286 # | 0.454 * | 0.517 * | 0.308 * | 0.390 * | 0.147 # | ||||
2015 | 0.396 * | 0.432 * | 0.282 * | 0.326 # | 0.503 * | 0.461 * | 0.485 # | 0.434 * | 0.173 # | ||||
NLI | 2000 | 0.178 # | 0.264 * | 0.103 * | 0.130 # | 0.442 * | 0.344 * | 0.050 * | 0.258 * | 0.043 # | 0.081 # | ||
2005 | 0.189 # | 0.238 * | 0.098 * | 0.197 # | 0.301 * | 0.361 # | 0.139 * | 0.240 * | 0.120 # | 0.169 # | |||
2010 | 0.189 # | 0.228 * | 0.114 * | 0.179 # | 0.305 * | 0.370 # | 0.091 * | 0.251 * | 0.088 # | 0.137 # | |||
2015 | 0.221 # | 0.295 * | 0.143 * | 0.231 # | 0.345 * | 0.313 # | 0.401 # | 0.300 * | 0.099 # | 0.151 # | |||
PFAL | 2000 | 0.280 * | 0.360 * | 0.129 # | 0.214 * | 0.515 * | 0.478 * | 0.183 * | 0.336 * | 0.082 # | 0.114 # | 0.055 # | |
2005 | 0.278 * | 0.370 * | 0.175 * | 0.240 # | 0.392 * | 0.476 * | 0.243 * | 0.356 * | 0.167 # | 0.203 # | 0.111 # | ||
2010 | 0.284 * | 0.338 * | 0.166 * | 0.232 # | 0.379 * | 0.490 * | 0.195 * | 0.351 * | 0.138 # | 0.174 # | 0.095 # | ||
2015 | 0.325 * | 0.408 * | 0.193 * | 0.284 # | 0.431 * | 0.438 * | 0.449 # | 0.402 * | 0.146 # | 0.190 # | 0.119 # | ||
PCOL | 2000 | 0.198 # | 0.302 * | 0.115 # | 0.143 # | 0.487 * | 0.369 * | 0.079 * | 0.295 * | 0.053 # | 0.086 # | 0.034 # | 0.067 # |
2005 | 0.209 # | 0.308 * | 0.133 # | 0.213 # | 0.369 * | 0.388 # | 0.197 * | 0.305 * | 0.134 # | 0.177 # | 0.089 # | 0.127 # | |
2010 | 0.209 # | 0.285 * | 0.139 # | 0.196 # | 0.365 * | 0.363 # | 0.133 * | 0.305 * | 0.107 # | 0.142 # | 0.079 # | 0.113 # | |
2015 | 0.148 # | 0.367 * | 0.175 # | 0.249 # | 0.415 * | 0.366 * | 0.426 # | 0.373 * | 0.119 # | 0.167 # | 0.103 # | 0.136 # |
References
- Caplin, A.; Ghandehari, M.; Lim, C.; Glimcher, P.; Thurston, G. Advancing environmental exposure assessment science to benefit society. Nat. Commun. 2019, 10, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.F.; Wu, T.; Zhu, M.; Jiang, G.J.; Xu, Y.; Wang, X.H.; Pu, L.J. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J.; Zhu, M.; Meadows, M.; Sun, L.C.; Wu, T.; Bu, X.G.; Xu, Y. Differential effects of various reclamation treatments on soil characteristics: An experimental study of newly reclaimed tidal mudflats on the east China coast. Sci. Total Environ. 2021, 768, 144996. [Google Scholar] [CrossRef] [PubMed]
- Khanna, I.; Khare, M.; Gargava, P.; Khan, A.A. Effect of PM2.5 chemical constituents on atmospheric visibility impairment. J. Air Waste Manag. 2018, 68, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J.; Leibensperger, E.M.; Zhang, L.; Fisher, J.A.; Pye, H.O.T. Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the united states: Implications for PM2.5 sensitivity to climate change. Atmos. Chem. Phys. 2012, 12, 3131–3145. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Fang, D.L.; Chen, B. Human health impact and economic effect for PM2.5 exposure in typical cities. Appl. Energ. 2019, 249, 316–325. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Maji, K.J.; Dikshit, A.K.; Arora, M.; Deshpande, A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total Environ. 2018, 612, 683–693. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.M. The influential factors of urban PM2.5 concentrations in china: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Lang, J.; Zhou, Y.; Wei, L.; Wang, X.; Guo, X. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain. Sci. Total Environ. 2017, 583, 280–291. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Liu, Z.Y.; Yang, L.G.; Luo, H.P.; Yang, Y.Y.; Zhao, R.; Wang, F.F. Variation in PM2.5 source over megacities on the ancient silk road, northwestern china. J. Clean. Prod. 2019, 208, 897–903. [Google Scholar] [CrossRef]
- Moore, A.; Figliozzi, M.; Bigazzi, A. Modeling impact of traffic conditions on variability of midblock roadside fine particulate matter case study of an urban arterial corridor. Transp. Res. Rec. 2014, 2428, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Dickinson, R.E.; Su, L.Y.; Zhou, C.L.; Wang, K.C. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. B Am. Meteorol. Soc. 2018, 99, 105–119. [Google Scholar] [CrossRef]
- Larkin, A.; van Donkelaar, A.; Geddes, J.A.; Martin, R.V.; Hystad, P. Relationships between changes in urban characteristics and air quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 2016, 50, 9142–9149. [Google Scholar] [CrossRef] [Green Version]
- Megaritis, A.G.; Fountoukis, C.; Charalampidis, P.E.; van der Gon, H.A.C.D.; Pilinis, C.; Pandis, S.N. Linking climate and air quality over Europe: Effects of meteorology on PM2.5 concentrations. Atmos. Chem. Phys. 2014, 14, 10283–10298. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Sokhi, R.S.; Kukkonen, J. PM2.5 concentrations in London for 2008-A modeling analysis of contributions from road traffic. J. Air Waste Manag. 2014, 64, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Guo, X.M.; Zhao, T.L.; Gong, S.L.; Xu, X.D.; Li, Y.Q.; Luo, L.; Gui, K.; Wang, H.L.; Zheng, Y.; et al. A modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmos. Environ. 2019, 196, 77–85. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- He, L.J.; Lin, A.W.; Chen, X.X.; Zhou, H.; Zhou, Z.G.; He, P.P. Assessment of MERRA-2 surface PM2.5 over the Yangtze River basin: Ground-based verification, spatiotemporal distribution and meteorological dependence. Remote Sens. 2019, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.N.; Lin, S.F.; Tsai, C.J.; Wu, Y.C.; Chen, C.F. Theoretical model for the evaporation loss of PM2.5 during filter sampling. Atmos. Environ. 2015, 109, 79–86. [Google Scholar] [CrossRef]
- Liang, Z.; Wei, F.L.; Wang, Y.Y.; Huang, J.; Jiang, H.; Sun, F.Y.; Li, S.C. The context-dependent effect of urban form on air pollution: A panel data analysis. Remote Sens. 2020, 12, 1793. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM(2.5)) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef]
- Yang, H.O.; Chen, W.B.; Liang, Z.F. Impact of land use on PM2.5 pollution in a representative city of middle China. Int. J. Environ. Res. Pub. Health 2017, 14, 462. [Google Scholar] [CrossRef]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Intensity of urban heat island and air quality in gdansk during 2010 heat wave. Pol. J. Environ. Stud. 2014, 23, 329–340. [Google Scholar]
- Cai, L.Y.; Zhuang, M.Z.; Ren, Y. A landscape scale study in southeast china investigating the effects of varied green space types on atmospheric PM2.5 in mid-winter. Urban For. Urban Green. 2020, 49, 126607. [Google Scholar] [CrossRef]
- Ma, Y.R.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Tu, M.Z.; Liu, Z.F.; He, C.Y.; Fang, Z.H.; Lu, W.L. The relationships between urban landscape patterns and fine particulate pollution in China: A multiscale investigation using a geographically weighted regression model. J. Clean. Prod. 2019, 237, 117744. [Google Scholar] [CrossRef]
- Lin, X.Q.; Wang, D. Spatiotemporal evolution of urban air quality and socioeconomic driving forces in China. J. Geogr. Sci. 2016, 26, 1533–1549. [Google Scholar] [CrossRef]
- Yang, Y.; Lan, H.F.; Li, J. Spatial econometric analysis of the impact of socioeconomic factors on PM2.5 concentration in China’s inland cities: A case study from Chengdu Plain Economic Zone. Int. J. Environ. Res. Pub. Health 2020, 17, 74. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.S.; Chen, J.J.; Wang, J.J.; Cheng, X. PM2.5 concentration influencing factors in China based on the Random Forest Model. Environ. Sci. 2020, 41, 2057–2065. (In Chinese) [Google Scholar]
- Wang, J.Y.; Wang, S.J.; Li, S.J. Examining the spatially varying effects of factors on PM2.5 concentrations in Chinese cities using geographically weighted regression modeling. Environ. Pollut. 2019, 248, 792–803. [Google Scholar] [CrossRef]
- Propastin, P.A. Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia. Remote Sens. Environ. 2009, 113, 2234–2242. [Google Scholar] [CrossRef]
- Xu, G.Y.; Ren, X.D.; Xiong, K.N.; Li, L.Q.; Bi, X.C.; Wu, Q.L. Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecol. Indic. 2020, 110, 105889. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, F.; Li, J. Assessing impacts and determinants of china’s environmental protection tax on improving air quality at provincial level based on bayesian statistics. J. Environ. Manag. 2020, 271, 111017. [Google Scholar] [CrossRef] [PubMed]
- Lee, C. Impacts of urban form on air quality: Emissions on the road and concentrations in the US metropolitan areas. J. Environ. Manag. 2019, 246, 192–202. [Google Scholar] [CrossRef] [PubMed]
- State Department of Environmental Protection of China. Ambient Air Quality Standards (GB3095-2012); China Environ-mental Science Press: Beijing, China, 2012. (In Chinese)
- WHO. Risk Assessment of Selected Pollutants: Particulate Matter, Air Quality Guidelines Global Update 2005; WHO Regional Office for Europe: Copenhagen, Denmark, 2006; pp. 217–306. [Google Scholar]
- Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Ding, Y.T.; Zhang, M.; Qian, X.Y.; Li, C.R.; Chen, S.; Wang, W.W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. J. Clean. Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GISci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Tian, J.R.; Zhao, N.Z.; Samson, E.L.; Wang, S.L. Brightness of nighttime lights as a proxy for freight traffic: A case study of China. IEEE J. Stars. 2014, 7, 206–212. [Google Scholar]
- Xie, Q.C.; Xu, X.; Liu, X.Q. Is there an EKC between economic growth and smog pollution in china? New evidence from semiparametric spatial autoregressive models. J. Clean. Prod. 2019, 220, 873–883. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W. Effects of agriculture upon the air quality and climate: Research, policy, and regulations. Environ. Sci. Technol. 2009, 43, 4234–4240. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Y.; Huang, X. Impact of land-cover layout on particulate matter 2.5 in urban areas of China. Int. J. Digit. Earth 2018, 13, 474–486. [Google Scholar] [CrossRef]
- Zhao, H.M.; Tong, D.Q.; Gao, C.Y.; Wang, G.P. Effect of dramatic land use change on gaseous pollutant emissions from biomass burning in Northeastern China. Atmos. Res. 2015, 153, 429–436. [Google Scholar] [CrossRef]
- Lu, D.B.; Xu, J.H.; Yue, W.Z.; Mao, W.L.; Yang, D.Y.; Wang, J.Z. Response of PM2.5 pollution to land use in China. J. Clean. Prod. 2020, 244, 118741. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Atmospheric Composition Analysis Group. Available online: http://fizz.phys.dal.ca/ (accessed on 22 September 2020).
- Resource and Environmental Sciences and Data Center, Chinese Academy of Sciences. Available online: http://www.resdc.cn/ (accessed on 22 September 2020).
- National Earth System Science Data Center, National Science & Technology Infrastructure of China. Available online: http://www.geodata.cn/ (accessed on 22 September 2020).
- Xu, X.L. Annual Vegetation Index (NDVI) Spatial Distribution Dataset in China. Data Registration and Publication System of the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences. Chin. Acad. Sci. 2018. [Google Scholar] [CrossRef]
- Xu, X.L. China GDP spatial distribution km grid dataset. Data Registration and Publication System of the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences. Chin. Acad. Sci. 2017. [Google Scholar] [CrossRef]
- Xu, X.L. China population spatial distribution km grid dataset. Data Registration and Publication System of the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences. Chin. Acad. Sci. 2017. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. Available online: https://www.ngdc.noaa.gov/ (accessed on 22 September 2020).
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogra. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, china. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Feng, H.H.; Zou, B.; Tang, Y.M. Scale- and region-dependence in landscape-PM2.5 correlation: Implications for urban planning. Remote Sens. 2017, 9, 918. [Google Scholar] [CrossRef] [Green Version]
- Oshan, T.; Li, Z.; Kang, W.; Wolf, L.; Fotheringham, A. Mgwr: A python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, F.; Zhang, J.; Zhou, W.; Wang, X.; Fu, H. Spatiotemporal mapping and multiple driving forces identifying of PM2.5 variation and its joint management strategies across china. J. Clean. Prod. 2020, 250, 119534. [Google Scholar] [CrossRef]
- Li, Z.Q.; Fotheringham, A.S. Computational improvements to multi-scale geographically weighted regression. Int. J. Geogr. Inf. Sci. 2020, 34, 1378–1397. [Google Scholar] [CrossRef]
- Hu, H.Y. Distribution of China’s population: Accompanying charts and density map. Acta Geogra. Sin. 1935, 2, 33–74. (In Chinese) [Google Scholar]
- Fotheringham, A.S.; Yue, H.; Li, Z. Examining the influences of air quality in China’s cities using multi-scale geographically weighted regression. Trans. GIS 2019, 23, 1444–1464. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.G. Examining spatially varying relationships between land use and water quality using geographically weighted regression i: Model design and evaluation. Sci. Total. Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.Z.; Hu, G.L.; Zhang, Z.H.; He, Z.B. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: A case study in the Hexi Corridor, Northwest China. Ecol. Eng. 2008, 33, 119–125. [Google Scholar] [CrossRef]
- Sun, Z.; Zong, Z.; Tian, C.; Li, J.; Sun, R.; Ma, W.; Li, T.; Zhang, G. Reapportioning the sources of secondary components of PM2.5: A combined application of positive matrix factorization and isotopic evidence. Sci. Total. Environ. 2021, 764, 142925. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.P.; Guan, Q.Y.; Pan, N.H.; Wang, Q.Z.; Li, H.C.; Lin, J.K.; Tan, Z.; Shao, W.Y. Using composite fingerprints to quantify the potential dust source contributions in Northwest China. Sci. Total. Environ. 2020, 742, 140560. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Liu, H.L.; Zhou, J.X.; Xia, M. GIS-based urban afforestation spatial patterns and a strategy for PM2.5 removal. Forests 2019, 10, 875. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Chen, D.L.; Zhuang, Y.; Cai, J.; Zhao, N.; He, B.; Gao, B.B.; Xu, B. Examining the influence of crop residue burning on local PM2.5 concentrations in Heilongjiang Province using ground observation and remote sensing data. Remote Sens. 2017, 9, 971. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Zhang, M.L.; Zou, J.; Zhu, A.X.; Chen, X.; Mi, Y.; Wang, Y.H.; Yang, H.; Li, Y.M. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China. Sci. Total. Environ. 2015, 536, 173–181. [Google Scholar] [CrossRef]
- Li, X.L.; Hu, X.M.; Ma, Y.J.; Wang, Y.F.; Li, L.G.; Zhao, Z.Q. Impact of planetary boundary layer structure on the formation and evolution of air-pollution episodes in Shenyang, Northeast China. Atmos. Environ. 2019, 214, 116850. [Google Scholar] [CrossRef]
- Chen, D.D.; Dai, Y.J. Characteristics of Northwest China rainfall intensity in recent 50 years. Chin. J. Atmos. Sci. 2009, 33, 923–935. (In Chinese) [Google Scholar]
- Lian, L.Y.; Liu, B.H. Change characteristics of dry and wet spells in northwest China during the past 58 years. Arid Land Geogr. 2019, 42, 1301–1309. (In Chinese) [Google Scholar]
- Qi, W.; Liu, S.H.; Zhao, M.F.; Liu, Z. China’s different spatial patterns of population growth based on the “Hu line”. J. Geogr. Sci. 2016, 26, 1611–1625. [Google Scholar] [CrossRef]
- Zhan, D.; Kwan, M.P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Yun, G.L.; Zuo, S.D.; Dai, S.Q.; Song, X.D.; Xu, C.D.; Liao, Y.L.; Zhao, P.Q.; Chang, W.Y.; Chen, Q.; Li, Y.Y.; et al. Individual and interactive influences of anthropogenic and ecological factors on forest PM2.5 concentrations at an urban scale. Remote Sens. 2018, 10, 521. [Google Scholar] [CrossRef] [Green Version]
Data Category | Data Describe | Resolution | ||
---|---|---|---|---|
PM2.5 data | PM2.5 | / | Ground-level fine particulate matter (PM2.5) concentration estimation dataset over China (V4.CH.02) [52], selected 2000, 2005, 2010, and 2015. | 0.01° × 0.01° |
DEM data | ELE | Terrain factor | Spatial distribution data of elevation (DEM) in China, from Resource and Environmental Sciences and Data Center, Chinese Academy of Sciences [53]. | 1 km × 1 km |
Meteorological data | PRE; TEM; | Meteorological factors | Spatial interpolation dataset of annual precipitation in China [53]; Spatial interpolation dataset of annual average temperature in China [53], from Resource and Environmental Sciences and Data Center, Chinese Academy of Sciences, selected 2000, 2005, 2010, and 2015. | |
WIND | Spatial distribution dataset of annual mean wind speed in China [54], from National Earth System Science Data Center, China, selected 2000, 2005, 2010, and 2015. | |||
Vegetation data | NDVI | Vegetation factors | Annual Normalized Difference Vegetation Index (NDVI) spatial distribution dataset in China [55], from Resource and Environmental Sciences and Data Center, Chinese Academy of Sciences, selected 2000, 2005, 2010, and 2015. | |
Natural underlying surface cover data | PFOL PGRL | China Land Use Remote Sensing Monitoring Data [53], from Resource and Environmental Sciences and Data Center, Chinese Academy of Sciences, selected 2000, 2005, 2010, and 2015. | ||
PUNL | Natural source factors | |||
Human socioeconomic activity data | POP | Human socioeconomic activity factors | China population spatial distribution km grid dataset [56], selected 2000, 2005, 2010, and 2015. | |
GDP | China GDP spatial distribution km grid dataset [57], selected 2000, 2005, 2010, and 2015. | |||
NLI | Version 4 DMSP-OLS Nighttime Lights Time Series [58], selected 2000, 2005, 2010, and 2013, from the National Geophysical Data Center (NGDC) of NOAA. | |||
Human underlying surface cover data | PFOL PCOL | Human regional activity factors | China Land Use Remote Sensing Monitoring Data, from Resource and Environmental Sciences and Data Center, Chinese Academy of Sciences [53], selected 2000, 2005, 2010, and 2015. |
Factors | 2000 | 2005 | 2010 | 2015 | ||
---|---|---|---|---|---|---|
Natural factors | Terrain factor | ELE | 0.170 ** | 0.176 ** | 0.176 ** | 0.205 ** |
Vegetation factors | NDVI | 0.234 ** | 0.175 ** | 0.162 ** | 0.206 ** | |
PFOL | 0.094 ** | 0.055 ** | 0.076 ** | 0.087 ** | ||
PGRL | 0.128 ** | 0.186 ** | 0.172 ** | 0.221 ** | ||
Meteorological factors | PRE | 0.327 ** | 0.211 ** | 0.207 ** | 0.241 ** | |
TEM | 0.392 ** | 0.351 ** | 0.352 ** | 0.266 ** | ||
WIND | 0.035 ** | 0.090 ** | 0.051 ** | 0.375 ** | ||
Natural source factor | PUNL | 0.231 ** | 0.180 ** | 0.184 ** | 0.214 ** | |
Socioeconomic factors | Human socioeconomic activity factors | GDP | 0.039 ** | 0.114 ** | 0.083 ** | 0.088 ** |
POP | 0.075 ** | 0.166 ** | 0.129 ** | 0.139 ** | ||
NLI | 0.009 ** | 0.0412 ** | 0.035 ** | 0.049 ** | ||
Human regional activity factors | PFAL | 0.052 ** | 0.101 ** | 0.089 ** | 0.104 ** | |
PCOL | 0.031 ** | 0.086 ** | 0.075 ** | 0.098 ** |
Variables | 2000 | 2005 | 2010 | 2015 | ||||
---|---|---|---|---|---|---|---|---|
BW 1 | NLU 2 | BW | NLU | BW | NLU | BW | NLU | |
ELE | 44 | 537 * | 44 | 537 * | 44 | 537 * | 44 | 537 * |
NDVI | 147 | 161 # | 115 | 205 # | 152 | 155 # | 179 | 132 # |
PFOL | 242 | 98 # | 171 | 138 # | 147 | 161 # | 242 | 98 # |
PRE | 222 | 106 # | 307 | 77 # | 262 | 90 # | 634 | 37 # |
TEM | 223 | 106 # | 307 | 77 # | 262 | 90 # | 387 | 61 # |
WIND | 287 | 82 # | 1372 | 17 | 1051 | 22 | 262 | 90 # |
PUNL | 70 | 337 # | 98 | 241 # | 93 | 254 # | 70 | 337 # |
GDP | 1090 | 22 | 194 | 122 # | 2912 | 8 | 753 | 31 |
POP | 1699 | 14 | 1581 | 15 | 1486 | 16 | 3776 | 6 |
NLI | 1436 | 16 | 1049 | 23 | 561 | 42 # | 3064 | 8 |
PFAL | 194 | 122 # | 147 | 161 # | 147 | 161 # | 179 | 132 # |
PCOL | 4174 | 6 | 3073 | 8 | 2861 | 8 | 782 | 30 |
Various | ELE | NDVI | PFOL | PRE | TEM | WIND | PUNL | GDP | POP | NLI | PFAL | PCOL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | Min/Max | −0.870 | −3.971 | −0.484 | −1.399 | −0.143 | 16.310 * | −0.325 | −0.211 | −0.240 | −3.050 | −0.166 | 0.514 # |
Mean | 0.073 | −0.227 | 0.057 | −0.373 | 0.328 | −0.242 | 0.197 | 0.019 | 0.031 | −0.021 | 0.190 | 0.100 | |
Max-Min | 3.108 | 0.517 | 0.270 | 1.691 | 0.680 | 0.444 | 0.616 | 0.385 | 0.129 | 0.081 | 0.400 | 0.067 | |
2005 | Min/Max | −0.720 | −6.289 | −0.267 | −2.141 | −0.362 | 3.174 * | −0.298 | −1.474 | 0.272 # | −23.600 | −0.049 | 0.667 # |
Mean | −0.009 | −0.290 | 0.085 | −0.159 | 0.152 | −0.302 | 0.200 | −0.030 | 0.156 | −0.062 | 0.252 | 0.114 | |
Max-Min | 2.767 | 0.605 | 0.356 | 0.845 | 0.704 | 0.337 | 0.523 | 0.673 | 0.217 | 0.123 | 0.425 | 0.047 | |
2010 | Min/Max | −0.884 | −4.408 | −0.918 | −1.906 | −0.427 | 3.197 * | −0.291 | −0.120 | −0.634 | −7.933 | −0.185 | 0.624 # |
Mean | −0.078 | −0.245 | 0.012 | −0.177 | 0.162 | −0.291 | 0.217 | 0.027 | 0.002 | −0.052 | 0.218 | 0.133 | |
Max-Min | 2.883 | 0.557 | 0.468 | 0.930 | 0.698 | 0.323 | 0.573 | 0.131 | 0.134 | 0.134 | 0.423 | 0.059 | |
2015 | Min/Max | −1.083 | −5.985 | −0.021 | −1.614 | −0.547 | −0.888 | −0.302 | −0.765 | 0.143 # | 3.455 # | 0.083 # | 0.366 # |
Mean | −0.062 | −0.202 | 0.127 | −0.118 | 0.102 | −0.077 | 0.271 | −0.017 | 0.063 | −0.052 | 0.283 | 0.146 | |
Max-Min | 3.678 | 0.454 | 0.290 | 0.690 | 0.631 | 0.370 | 0.656 | 0.607 | 0.126 | 0.054 | 0.364 | 0.121 |
Parameters | 2000 | 2005 | 2010 | 2015 | ||||
---|---|---|---|---|---|---|---|---|
OLS | MGWR | OLS | MGWR | OLS | MGWR | OLS | MGWR | |
R2 | 0.537 | 0.987 | 0.542 | 0.985 | 0.529 | 0.985 | 0.516 | 0.983 |
Adjusted R2 | 0.537 | 0.985 | 0.542 | 0.983 | 0.529 | 0.984 | 0.516 | 0.981 |
AIC | 48,827.891 | −29,984.883 | 48,570.197 | −26,563.277 | 49,209.984 | −27,311.435 | 49,909.704 | −24,172.930 |
AICc | 48,829.909 | −29,244.855 | 48,572.214 | −25,785.727 | 49,212.002 | −26,561.333 | 49,911.722 | −23,412.529 |
RSS | 10,928.094 | 306.489 | 10,807.470 | 352.498 | 11,106.479 | 342.742 | 11,432.107 | 391.469 |
MIR | 0.915 | 0.016 | 0.893 | 0.021 | 0.904 | 0.026 | 0.896 | 0.043 |
Factors | Relationship And Intensityabs 1 with PM2.5 | Spatial Scale | Spatial Tendency | Major Geographic Locations Influenced | Likely Causes | Additional Remarks |
---|---|---|---|---|---|---|
ELE | --- ~ +++ 2; 0.221 2 | Local 3 | Complex, increases from southern to northern | Xinjiang and Guangxi | Terrain effect | Consist with Xia et al. [30] |
NDVI | -- ~ +; 0.211 | Smaller regional 4 | Negative effect increases from southeast to northwest | Northwest China | Sources of dust storms and vegetation fixation | High intensity in the northwest |
PFOL | - ~ ++; 0.123 | Smaller regional | Weak positive effect increases from western to eastern | Middle China | Limited urban pollution removal from woodlands | Positive effects are different from vegetation effects |
PRE | -- ~ ++; 0.137 | Smaller regional | Negative effect weakens from northwest to southeast | Northwest China | Weak precipitation has limited effect on PM2.5 removal | Obvious in northwest |
TEM | -- ~ ++; 0.145 | Smaller regional | Negative to positive from southwest to northeast | Southwest China; northeast China | Atmospheric convection; inverse temperature | Negative effects are evident in southwest China; positive effects are evident in northeast China |
WIND | - ~ +; 0.097 | Smaller regional | Negative effect increases from northwest to southeast | Northwest China; south China | Diffusion effect of wind | Role with topography |
PUNL | - ~ +++; 0.263 | Smaller regional | Decrease from southern to northern | South China; northwest China | Natural sources | Strong positive influence in southern and eastern China |
GDP | -- ~ ++; 0.097 | Larger regional 5 | Negative to positive effects show a northeast to southwest shift | The Qinghai-Tibet area | Implementing significant pollution control | Negative effect in the east; economic and ecological win-win |
POP | +; 0.067 | Larger regional | Increases from eastern to western | Northwest China | The role of man-made sources of pollution is diminished | Contrary to the population density distribution |
NLI | -; 0.054 | Larger regional | The intensity decreases from southern to northern | Xinjiang; Tibet; Eastern Coastal Region | Integrated city level improvement | EKC has crossed the inflection point |
PFAL | - ~ ++; 0.290 | Smaller regional | Positive effect increases from southern to northern, the strongest in middle region | Middle east China | Dynamic Source Landscape | Rapid land use/cover change and anthropogenic binding changes on atmospheric dispersion |
PCOL | +; 0.146 | Larger regional | Weakens from eastern to western | North China and East China | China Urbanization Development | More stronger than all other socioeconomic activities (GDP, POP, NLI) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Zhou, L.; Jiang, G.; Meadows, M.E.; Zhang, J.; Pu, L.; Wu, C.; Xie, X. Modelling Spatial Heterogeneity in the Effects of Natural and Socioeconomic Factors, and Their Interactions, on Atmospheric PM2.5 Concentrations in China from 2000–2015. Remote Sens. 2021, 13, 2152. https://doi.org/10.3390/rs13112152
Wu T, Zhou L, Jiang G, Meadows ME, Zhang J, Pu L, Wu C, Xie X. Modelling Spatial Heterogeneity in the Effects of Natural and Socioeconomic Factors, and Their Interactions, on Atmospheric PM2.5 Concentrations in China from 2000–2015. Remote Sensing. 2021; 13(11):2152. https://doi.org/10.3390/rs13112152
Chicago/Turabian StyleWu, Tao, Lixia Zhou, Guojun Jiang, Michael E. Meadows, Jianzhen Zhang, Lijie Pu, Chaofan Wu, and Xuefeng Xie. 2021. "Modelling Spatial Heterogeneity in the Effects of Natural and Socioeconomic Factors, and Their Interactions, on Atmospheric PM2.5 Concentrations in China from 2000–2015" Remote Sensing 13, no. 11: 2152. https://doi.org/10.3390/rs13112152
APA StyleWu, T., Zhou, L., Jiang, G., Meadows, M. E., Zhang, J., Pu, L., Wu, C., & Xie, X. (2021). Modelling Spatial Heterogeneity in the Effects of Natural and Socioeconomic Factors, and Their Interactions, on Atmospheric PM2.5 Concentrations in China from 2000–2015. Remote Sensing, 13(11), 2152. https://doi.org/10.3390/rs13112152