Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. General Approach
2.3. Preparation of Spatial Data
2.3.1. Land Cover Map
2.3.2. Landsat Imagery
2.3.3. Topographic Rasters
2.4. Hindcasting (1985/2014) and Simulating (2015/2019) Land Cover Using Random Forest Classification
2.5. Change Detection
2.6. Predicting Future Shrub Expansion
3. Results
3.1. Random Forest Algorithm
3.2. Temporal Changes in Land Cover Class
3.2.1. Shrub Cover Class
3.2.2. Dry Vegetation Class
3.2.3. Non-Vegetated Class
3.2.4. Wet Vegetation Class
3.3. Spatial Changes in Land Cover Class
3.4. Predicting Changes in Shrub Cover
3.5. Vegetation Change at Existing Monitoring Sites
4. Discussion
4.1. Temporal and Spatial Changes in Land Cover
4.2. Future Shrub Expansion in TMNP
4.3. Implications for Wildlife, Protected Areas Management, and People
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aerts, R.; Cornelissen, J.H.C.; Dorrepaal, E. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol. 2006, 182, 65–77. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Jefferies, R.L.; Reynolds, J.F.; Shaver, G.R.; Svoboda, J.; Chu, E.W. Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective; Academic Press: San Diego, CA, USA, 1991; p. 469. [Google Scholar]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Björk, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; Dorrepaal, E.; Elumeeva, T.G.; et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Hik, D.S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 2017, 106, 547–560. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Grabowski, M.M.; Thomas, H.J.D.; Angers-Blondin, S.; Daskalova, G.N.; Bjorkman, A.D.; Cunliffe, A.M.; Assmann, J.J.; Boyle, J.S.; McLeod, E.; et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 2019, 89, e01351. [Google Scholar] [CrossRef] [Green Version]
- Barrio, I.C.; Lindén, E.; Te Beest, M.; Olofsson, J.; Rocha, A.; Soininen, E.M.; Alatalo, J.M.; Andersson, T.; Asmus, A.; Boike, J.; et al. Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biol. 2017, 40, 2265–2278. [Google Scholar] [CrossRef]
- Morrissette-Boileau, C.; Boudreau, S.; Tremblay, J.-P.; Côté, S.D. Revisiting the role of migratory caribou in the control of shrub expansion in northern Nunavik (Québec, Canada). Polar Biol. 2018, 41, 1845–1853. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Swenson, S.C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 2011, 6, 045504. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Elmendorf, S.C.; Beck, P.S.A.; Wilmking, M.; Hallinger, M.; Blok, D.; Tape, K.D.; Rayback, S.A.; Macias-Fauria, M.; Forbes, B.C.; et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 2015, 5, 887–891. [Google Scholar] [CrossRef]
- Wilcox, E.J.; Keim, D.; de Jong, T.; Walker, B.; Sonnentag, O.; Sniderhan, A.E.; Mann, P.; Marsh, P. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Ford, J.D.; Way, R.G. The Impacts of Climate and Social Changes on Cloudberry (Bakeapple) Picking: A Case Study from Southeastern Labrador. Hum. Ecol. 2018, 46, 849–863. [Google Scholar] [CrossRef] [Green Version]
- Boulanger-Lapointe, N.; Henry, G.H.R.; Lévesque, E.; Cuerrier, A.; Desrosiers, S.; Gérin-Lajoie, J.; Hermanutz, L.; Siegwart Collier, L. Climate and environmental drivers of berry productivity from the forest–tundra ecotone to the high Arctic in Canada. Arct. Sci. 2020, 6, 529–544. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef] [Green Version]
- Parks Canada. State of the Park Report, Torngat Mountains National Park of Canada; Parks Canada: Rocky Harbour, NL, Canada, 2008; p. 51. [Google Scholar]
- Siegwart Collier, L. Climate Change Impacts on Berry Shrub Performance in Treeline and Tundra Ecosystems; Memorial University of Newfoundland: St. John’s, NL, Canada, 2020. [Google Scholar]
- Fraser, R.H.; Olthof, I.; Carrière, M.; Deschamps, A.; Pouliot, D. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive. Environ. Res. Lett. 2011, 6, 045502. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.H.; Lantz, T.; Olthof, I.; Kokelj, S.V.; Sims, R.A. Warming-Induced Shrub Expansion and Lichen Decline in the Western Canadian Arctic. Ecosystems 2014, 17, 1151–1168. [Google Scholar] [CrossRef]
- Bonney, M.T.; Danby, R.K.; Treitz, P.M. Landscape variability of vegetation change across the forest to tundra transition of central Canada. Remote Sens. Environ. 2018, 217, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Paradis, M.; Lévesque, E.; Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 2016, 11, 085005. [Google Scholar] [CrossRef]
- Ackerman, D.; Griffin, D.; Hobbie, S.E.; Finlay, J.C. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Chang. Biol. 2017, 23, 4294–4302. [Google Scholar] [CrossRef]
- Chen, A.; Lantz, T.C.; Hermosilla, T.; Wulder, M.A. Biophysical controls of increased tundra productivity in the western Canadian Arctic. Remote Sens. Environ. 2021, 258, 112358. [Google Scholar] [CrossRef]
- Andruko, R.; Danby, R.; Grogan, P. Recent Growth and Expansion of Birch Shrubs Across a Low Arctic Landscape in Continental Canada: Are These Responses More a Consequence of the Severely Declining Caribou Herd than of Climate Warming? Ecosystems 2020, 20, 1362–1379. [Google Scholar] [CrossRef] [Green Version]
- García Criado, M.; Myers-Smith, I.H.; Bjorkman, A.D.; Lehmann, C.E.R.; Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 2020, 29, 925–943. [Google Scholar] [CrossRef]
- Campbell, T.K.F.; Lantz, T.C.; Fraser, R.H.; Hogan, D. High Arctic Vegetation Change Mediated by Hydrological Conditions. Ecosystems 2021, 24, 106–121. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.A.; et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Mallory, M.L.; Gilchrist, H.G.; Janssen, M.; Major, H.L.; Merkel, F.; Provencher, J.F.; Strøm, H. Financial costs of conducting science in the Arctic: Examples from seabird research. Arct. Sci. 2018, 4, 624–633. [Google Scholar] [CrossRef]
- Way, R.G.; Lewkowicz, A.G. Modelling the spatial distribution of permafrost in Labrador–Ungava using the temperature at the top of permafrost. Can. J. Earth Sci. 2016, 53, 1010–1028. [Google Scholar] [CrossRef]
- Barrand, N.E.; Way, R.G.; Bell, T.; Sharp, M.J. Recent changes in area and thickness of Torngat Mountain glaciers (northern Labrador, Canada). Cryosphere 2017, 11, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Way, R.G.; Bell, T.; Barrand, N.E. Glacier change from the early Little Ice Age to 2005 in the Torngat Mountains, northern Labrador, Canada. Geomorphology 2015, 246, 558–569. [Google Scholar] [CrossRef] [Green Version]
- COSEWIC. COSEWIC Assessment and Status Report on the Caribou Rangifer Tarandus, Eastern Migratory Population and Torngat Mountains Population in Canada; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2017; p. 85. [Google Scholar]
- Davis, E.; Trant, A.; Hermanutz, L.; Way, R.G.; Lewkowicz, A.G.; Siegwart Collier, L.; Cuerrier, A.; Whitaker, D. Plant–Environment Interactions in the Low Arctic Torngat Mountains of Labrador. Ecosystems 2020. [Google Scholar] [CrossRef]
- Parks Canada. Tongait KakKasuangita SilakKijapvinga, Torngat Mountains National Park of Canada—Management Plan; Parks Canada: Nain, NL, Canada, 2010; p. 76. [Google Scholar]
- Mizel, J.D.; Schmidt, J.H.; Mcintyre, C.L.; Roland, C.A. Rapidly shifting elevational distributions of passerine species parallel vegetation change in the subarctic. Ecosphere 2016, 7, e01264. [Google Scholar] [CrossRef] [Green Version]
- Berteaux, D.; Ricard, M.; St-Laurent, M.H.; Casajus, N.; Perie, C.; Beauregard, F.; de Blois, S. Northern protected areas will become important refuges for biodiversity tracking suitable climates. Sci. Rep. 2018, 8, 4623. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, P.; Wang, F.; Notaro, M.; Vimont, D.J.; Williams, J.W. Disproportionate magnitude of climate change in United States national parks. Environ. Res. Lett. 2018, 13, 104001. [Google Scholar] [CrossRef] [Green Version]
- Holsinger, L.; Parks, S.A.; Parisien, M.A.; Miller, C.; Batllori, E.; Moritz, M.A. Climate change likely to reshape vegetation in North America’s largest protected areas. Conserv. Sci. Pract. 2019, 1, e50. [Google Scholar] [CrossRef]
- McLennan, D.; Ponomarenko, S. Updating ecosystem inventories at Parks Canada. In Proceedings of the Fifth International SAMPA Conference, Nara, Japan, 25–30 May 2003; p. 9. [Google Scholar]
- Lemelin, H.; Johnston, M.; Lough, D.; Rowell, J.; Broomfield, W.; Baikie, G.; Sheppard, K. Two Parks, One Vision—Collaborative Management Approaches to Transboundary Protected Areas in Northern Canada: Tongait KakKasuangita SilakKijapvinga/Torngat Mountains National Park, Nunatsiavut and le Parc national Kuururjuaq Nunavik. In Indigenous Peoples’ Governance of Land and Protected Territories in the Arctic; Springer: Cham, Switzerland, 2016; pp. 71–82. [Google Scholar]
- Banfield, C.E.; Jacobs, J.D. Regional patterns of temperature and precipitation for Newfoundland and Labrador during the past century. Can. Geogr. 1998, 42, 354–364. [Google Scholar] [CrossRef]
- Riley, J.L.; Notzl, L.; Greene, R. Labrador Nature Atlas: Vol II, Ecozones, Ecoregions and Ecodistricts; Nature Conservancy of Canada: Toronto, ON, Canada, 2013; p. 128. [Google Scholar]
- Whitaker, D. Expanded Range Limits of Boreal Birds in the Torngat Mountains of Northern Labrador. Can. Field Nat. 2017, 131, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Barrette, C.; Brown, R.; Way, R.; Mailhot, A.; Diaconescu, E.P.; Grenier, P.; Chaumont, D.; Dumont, D.; Sévigny, C.; Howell, S.; et al. Chapter 2: Nunavik and Nunatsiavut Regional Climate Information Update; ArcticNet Inc.: Québec, QC, Canada, 2020; p. 58. [Google Scholar]
- Zamin, T.J.; Côté, S.D.; Tremblay, J.-P.; Grogan, P. Experimental warming alters migratory caribou forage quality. Ecol. Appl. 2017, 27, 2061–2073. [Google Scholar] [CrossRef]
- Leblond, M.; St-Laurent, M.H.; Côté, S.D. Caribou, water, and ice—Fine-scale movements of a migratory arctic ungulate in the context of climate change. Mov. Ecol. 2016, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, J.; Masek, J.G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Ponomarenko, S.; Quirouette, J. SPOT5-Based Terrestrial Ecotype Map for Torngat Mountains National Park, 2014.
- USGS. Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS). Available online: https://lpdaacsvc.cr.usgs.gov/appeears/ (accessed on 1 July 2020).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pironkova, Z.; Whaley, R.; Lan, K. Time Series Analysis of Landsat NDVI Composites with Google Earth Engine and R: User Guide; Ontario Ministry of Natural Resources and Forestry, Science and Research Branch: Peterborough, ON, Canada, 2018; p. 18. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Natural Resources Canada. Canadian Digital Elevation Model, 1945–2011; Natural Resources Canada: Ottawa, ON, Canada, 2015. [Google Scholar]
- McCune, B.; Dylan, K. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lemay, M.; Provencher-Nolet, L.; Bernier, M.; Lévesque, E.; Boudreau, S. Spatially explicit modeling and prediction of shrub cover increase near Umiujaq, Nunavik. Ecol. Monogr. 2018, 88, 385–407. [Google Scholar] [CrossRef]
- Sturm, M.; Schimel, J.; Michaelson, G.; Welker, J.M.; Oberbauer, S.F.; Liston, G.E.; Fahnestock, J.; Romanovsky, V. Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland. Bioscience 2005, 55, 17–26. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference, R Package. 2020. Available online: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333 (accessed on 1 July 2020).
- Anderson, D.R. Multimodel Inference. In Model Based Inference in the Life Sciences: A Primer on Evidence; Springer: New York, NY, USA, 2008; pp. 105–124. [Google Scholar]
- Tremblay, B.; Lévesque, E.; Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: Evidence from Eastern Nunavik. Environ. Res. Lett. 2012, 7, 035501. [Google Scholar] [CrossRef] [Green Version]
- Provencher-Nolet, L.; Bernier, M.; Lévesque, E. Short term change detection in tundra vegetation near Umiujaq, subarctic Quebec, Canada. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Québec City, QC, Canada, 13–18 July 2014; pp. 4668–4670. [Google Scholar]
- Larking, T.; Davis, E.; Way, R.; Hermanutz, L.; Trant, A. Recent greening driven by species-specific shrub growth characteristics in Nunatsiavut, Labrador, Canada. Arct. Sci. 2021. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.; Rayback, S.A.; Weijers, S.; Trant, A.J.; Tape, K.D.; Naito, A.T.; Wipf, S.; et al. Methods for measuring arctic and alpine shrub growth: A review. Earth Sci. Rev. 2015, 140, 1–13. [Google Scholar] [CrossRef]
- Anthelme, F.; Cornillon, L.; Brun, J.-J. Secondary succession of Alnus viridis (Chaix) DC. in Vanoise National Park, France: Coexistence of sexual and vegetative strategies. Ann. For. Sci. 2002, 59, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Pajunen, A.M.; Okanen, J.; Virtanen, R. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J. Veg. Sci. 2011, 22, 837–846. [Google Scholar] [CrossRef]
- Domine, F.; Barrere, M.; Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: Impact on snow physical properties and permafrost thermal regime. Biogeosciences 2016, 13, 6471–6486. [Google Scholar] [CrossRef] [Green Version]
- Kropp, H.; Loranty, M.M.; Natali, S.M.; Kholodov, A.L.; Rocha, A.V.; Myers-Smith, I.H.; Abbott, B.W.; Abermann, J.; Blanc-Betes, E.; Blok, D.; et al. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Kemppinen, J.; Niittynen, P.; Virkkala, A.-M.; Happonen, K.; Riihimäki, H.; Aalto, J.; Luoto, M. Dwarf Shrubs Impact Tundra Soils: Drier, Colder, and Less Organic Carbon. Ecosystems 2021. [Google Scholar] [CrossRef]
- Way, R.; Lapalme, C. Does tall vegetation warm or cool the ground surface? Constraining the ground thermal impacts of upright vegetation in northern environments. Environ. Res. Lett. 2021. [Google Scholar] [CrossRef]
- Naito, A.T.; Cairns, D.M. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics. Environ. Res. Lett. 2011, 6, 045506. [Google Scholar] [CrossRef]
- Tape, K.D.; Christie, K.; Carroll, G.; O’Donnell, J.A. Novel wildlife in the Arctic: The influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Glob. Chang. Biol. 2016, 22, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Tape, K.D.; Hallinger, M.; Welker, J.M.; Ruess, R.W. Landscape Heterogeneity of Shrub Expansion in Arctic Alaska. Ecosystems 2012, 15, 711–724. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Yoshikawa, K.; Fastie, C.L.; Hinzman, L.; Fraver, M. Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska. Permafr. Periglac. Process. 2003, 14, 93–101. [Google Scholar] [CrossRef]
- van der Kolk, H.-J.; Heijmans, M.M.P.D.; van Huissteden, J.; Pullens, J.W.M.; Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 2016, 13, 6229–6245. [Google Scholar] [CrossRef] [Green Version]
- Berteaux, D.; Gauthier, G.; Domine, F.; Ims, R.A.; Lamoureux, S.F.; Lévesque, E.; Yoccoz, N. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arct. Sci. 2017, 3, 65–90. [Google Scholar] [CrossRef] [Green Version]
- Wrona, F.J.; Johansson, M.; Culp, J.M.; Jenkins, A.; Mård, J.; Myers-Smith, I.H.; Prowse, T.D.; Vincent, W.F.; Wookey, P.A. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. J. Geophys. Res. Biogeosci. 2016, 121, 650–674. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.M.; Bring, A.; Peterson, G.D.; Gordon, L.J.; Destouni, G. Opportunities and limitations to detect climate-related regime shifts in inland Arctic ecosystems through eco-hydrological monitoring. Environ. Res. Lett. 2011, 6, 014015. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Veness, T.; Chasmer, L.E.; Sniderhan, A.E.; Quinton, W.L. Forests on thawing permafrost: Fragmentation, edge effects, and net forest loss. Glob. Chang. Biol. 2014, 20, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Tape, K.D.; Sturm, M.; Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol. 2006, 12, 686–702. [Google Scholar] [CrossRef]
- Sturm, M.; McFadden, J.P.; Liston, G.E.; Chapin, F.S., III; Racine, C.H.; Holmgren, J. Snow–Shrub Interactions in Arctic Tundra: A Hypothesis with Climatic Implications. J. Clim. 2001, 14, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Myers-Smith, I.H.; Hik, D.S. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions. Ecol. Evol. 2013, 3, 3683–3700. [Google Scholar] [CrossRef]
- Ropars, P.; Lévesque, E.; Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in northern Québec? A dendrochronological analysis of Betula glandulosa. J. Ecol. 2015, 103, 679–690. [Google Scholar] [CrossRef]
- Cameron, E.A.; Lantz, T.C. Drivers of tall shrub proliferation adjacent to the Dempster Highway, Northwest Territories, Canada. Environ. Res. Lett. 2016, 11, 045006. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Boulanger-Lapointe, N.; Gérin-Lajoie, J.; Siegwart Collier, L.; Desrosiers, S.; Spiech, C.; Henry, G.H.R.; Hermanutz, L.; Lévesque, E.; Cuerrier, A. Berry Plants and Berry Picking in Inuit Nunangat: Traditions in a Changing Socio-Ecological Landscape. Hum. Ecol. 2019, 47, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Chagnon, C.; Boudreau, S. Shrub canopy induces a decline in lichen abundance and diversity in Nunavik (Québec, Canada). Arct. Antarct. Alp. Res. 2019, 51, 521–532. [Google Scholar] [CrossRef]
- Boelman, N.T.; Gough, L.; Wingfield, J.; Goetz, S.; Asmus, A.; Chmura, H.E.; Krause, J.S.; Perez, J.H.; Sweet, S.K.; Guay, K.C. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra. Glob. Chang. Biol. 2015, 21, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, M.; Allard, M.; Levesque, E. Ecosystem changes across a gradient of permafrost degradation in subarctic Québec (Tasiapik Valley, Nunavik, Canada). Arct. Sci. 2019, 5, 1–26. [Google Scholar] [CrossRef]
- Grünberg, I.; Wilcox, E.J.; Zwieback, S.; Marsh, P.; Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 2020, 17, 4261–4279. [Google Scholar] [CrossRef]
Original Ecotype (Ponomarenko and Quirouette 2014) | Reclassified Land Cover (This Study) | Ecotype Pixels per Land Cover Class |
---|---|---|
Dwarf shrub | Shrub | 28.5% |
Low-medium shrub | Shrub | 58.7% |
Medium-tall shrub | Shrub | 12.8% |
Herb-lichen tundra | Dry vegetation | 21.7% |
Mesic Racomitrium lanuginosum | Dry vegetation | 23.3% |
Rock-lichen | Dry vegetation | 55.1% |
Alluvial non-vegetated | Non-vegetated | 6.0% |
Rock | Non-vegetated | 90.9% |
Sparsely vegetated beach | Non-vegetated | 3.0% |
Brackish fen | Wet vegetation | 0.4% |
Fen | Wet vegetation | 41.9% |
Moist sedge | Wet vegetation | 57.7% |
Cloud | NA (Masked) | NA (Masked) |
Ocean | NA (Masked) | NA (Masked) |
Shadow | NA (Masked) | NA (Masked) |
Shallow water | NA (Masked) | NA (Masked) |
Snow | NA (Masked) | NA (Masked) |
Snowbank | NA (Masked) | NA (Masked) |
Water | NA (Masked) | NA (Masked) |
Shrub (Actual) | Dry veg. (Actual) | Non-veg. (Actual) | Wet veg. (Actual) | Sum (Predicted) | |
---|---|---|---|---|---|
Shrub (predicted) | 197,908 | 8211 | 6030 | 36,526 | 248,675 |
Dry veg. (predicted) | 16,160 | 2,328,700 | 206,718 | 210,150 | 2,761,728 |
Non-veg. (predicted) | 2882 | 68,008 | 237,276 | 7230 | 315,396 |
Wet veg. (predicted) | 57,619 | 137,502 | 19,207 | 578,506 | 792,834 |
Sum (actual) | 274,569 | 2,542,421 | 469,231 | 832,412 | - |
Balanced classification accuracy | 85.38% | 82.06% | 74.21% | 81.49% | - |
Variable | Estimate | Std. Error | z Value | p value |
---|---|---|---|---|
(Intercept) | 133.00 | 0.44 | 302.04 | <0.0001 |
Land cover: No veg | −0.59 | 0.01 | −57.77 | <0.0001 |
Land cover: Wet veg | 1.44 | 0.01 | 228.47 | <0.0001 |
Neighbour shrubs | 0.30 | 0.00 | 177.88 | <0.0001 |
Elevation | −0.01 | 0.00 | −354.22 | <0.0001 |
Latitude | −2.28 | 0.01 | −308.48 | <0.0001 |
Distance to coast | 6.21 × 10−5 | 0.00 | 193.50 | <0.0001 |
Aspect | 0.11 | 0.00 | 21.89 | <0.0001 |
Slope | 2.97 | 0.05 | 54.77 | <0.0001 |
Slope2 | −3.67 | 0.07 | −55.94 | <0.0001 |
Aspect × slope | 0.18 | 0.02 | 10.31 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, E.L.; Trant, A.J.; Way, R.G.; Hermanutz, L.; Whitaker, D. Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park. Remote Sens. 2021, 13, 2085. https://doi.org/10.3390/rs13112085
Davis EL, Trant AJ, Way RG, Hermanutz L, Whitaker D. Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park. Remote Sensing. 2021; 13(11):2085. https://doi.org/10.3390/rs13112085
Chicago/Turabian StyleDavis, Emma L., Andrew J. Trant, Robert G. Way, Luise Hermanutz, and Darroch Whitaker. 2021. "Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park" Remote Sensing 13, no. 11: 2085. https://doi.org/10.3390/rs13112085
APA StyleDavis, E. L., Trant, A. J., Way, R. G., Hermanutz, L., & Whitaker, D. (2021). Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park. Remote Sensing, 13(11), 2085. https://doi.org/10.3390/rs13112085