New Constraints on Slip Behavior of the Jianshui Strike-Slip Fault from Faulted Stream Channel Risers and Airborne Lidar Data, SE Tibetan Plateau, China
Abstract
:1. Introduction
2. Regional Seismotectonic Setting
3. Methods
3.1. Data Acquisition and Processing
3.2. Identification and Measurement of Offset Markers
3.3. Analysis of the Offset Characteristics
4. Results
4.1. Faulted Landforms and Offsets
4.1.1. Dongshanzhai Site
4.1.2. Shenxiandong Site
4.1.3. Xinzhai Site
4.1.4. Bagenjiao Site
4.2. Offset Distribution
5. Discussion
5.1. Spatial Distribution of the Fault Slip
5.2. Temporal Distribution of Fault Slip
5.3. Multistage Offset Evolution Model of the Stream Channel Riser
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, A.S.; Bürgmann, R. Surface slip during large Owens Valley earthquakes. Geochem. Geophys. Geosyst. 2016, 17, 2239–2269. [Google Scholar] [CrossRef] [Green Version]
- Klinger, Y.; Etchebes, M.; Tapponnier, P.; Narteau, C. Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat. Geosci. 2011, 4, 389–392. [Google Scholar] [CrossRef]
- Sieh, K. Slip along the San Andreas fault associated with the great 1857 earthquake. Bull. Seismol. Soc. Am. 1978, 68, 1421–1448. [Google Scholar]
- Zielke, O.; Klinger, Y.; Arrowsmith, J.R. Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics 2015, 638, 43–62. [Google Scholar] [CrossRef]
- Cowgill, E. Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth Planet. Sci. Lett. 2007, 254, 239–255. [Google Scholar] [CrossRef]
- Harbert, S.A.; Duvall, A.R.; Tucker, G.E. The Role of Near-Fault Relief Elements in Creating and Maintaining a Strike-Slip Landscape. Geophys. Res. Lett. 2018, 45, 11683–11692. [Google Scholar] [CrossRef] [Green Version]
- Reitman, N.G.; Mueller, K.J.; Tucker, G.E.; Gold, R.D.; Briggs, R.W.; Barnhart, K.R. Offset Channels May Not Accurately Record Strike-Slip Fault Displacement: Evidence From Landscape Evolution Models. J. Geophys. Res. Solid Earth 2019, 124, 13427–13451. [Google Scholar] [CrossRef]
- Van Der Woerd, J.; Tapponnier, P.; Ryerson, F.J.; Meriaux, A.-S.; Meyer, B.; Gaudemer, Y.; Finkel, R.C.; Caffee, M.W.; Guoguang, Z.; Zhiqin, X. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys. J. Int. 2002, 148, 356–388. [Google Scholar] [CrossRef]
- Berryman, K.R.; Cochran, U.A.; Clark, K.J.; Biasi, G.P.; Langridge, R.M.; Villamor, P. Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault. Science 2012, 336, 1690–1693. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; Mao, Z.; Xie, Z.; Dong, S.; Gao, F.; Gai, H. Paleoearthquakes and Rupture Behavior of the Lenglongling Fault: Implications for Seismic Hazards of the Northeastern Margin of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2019, 124, 1520–1543. [Google Scholar] [CrossRef]
- Sieh, K.; Stuiver, M.; Brillinger, D. A more precise chronology of earthquakes produced by the San Andreas Fault in southern California. J. Geophys. Res. Space Phys. 1989, 94, 603–623. [Google Scholar] [CrossRef] [Green Version]
- Weldon, R.; Scharer, K.; Fumal, T.; Biasi, G. Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work. GSA Today 2004, 14, 4–10. [Google Scholar] [CrossRef]
- Densmore, A.L.; Ellis, M.A.; Li, Y.; Zhou, R.; Hancock, G.S.; Richardson, N. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics 2007, 26, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Schoenbohm, L.M.; Burchfiel, B.C.; Liangzhong, C.; Jiyun, Y. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. GSA Bull. 2006, 118, 672–688. [Google Scholar] [CrossRef]
- Shi, X.; Weldon, R.; Liu-Zeng, J.; Wang, Y.; Weldon, E.; Sieh, K.; Li, Z.; Zhang, J.; Yao, W.; Li, Z. Limit on slip rate and timing of recent seismic ground-ruptures on the Jinghong fault, SE of the eastern Himalayan syntaxis. Tectonophysics 2018, 734-735, 148–166. [Google Scholar] [CrossRef]
- Haugerud, R.A.; Harding, D. Some algorithms for virtual deforestation (VDF) of LIDAR topographic survey data. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2001, 34, 211–218. [Google Scholar]
- Liu, J.; Chen, T.; Zhang, P.; Zhang, H.; Zheng, W.; Ren, Z.; Liang, S.; Sheng, C.; Gan, W. Illuminating the active Haiyuan fault, China by Airborne Light Detection and Ranging. Chin. Sci. Bull. 2013, 58, 41–45, (In Chinese with English Abstract). [Google Scholar]
- Chen, R.-F.; Lin, C.-W.; Chen, Y.-H.; He, T.-C.; Fei, L.-Y. Detecting and Characterizing Active Thrust Fault and Deep-Seated Landslides in Dense Forest Areas of Southern Taiwan Using Airborne LiDAR DEM. Remote Sens. 2015, 7, 15443–15466. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, D.; Grebby, S.; Tansey, K.; Gosar, A.; Kastelic, V. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, G.P.; Quigley, M.C.; Davies, T.R.H. Lidar reveals uniform Alpine fault offsets and bimodal plate boundary rupture behavior, New Zealand. Geology 2014, 42, 411–414. [Google Scholar] [CrossRef]
- Lin, Z.; Kaneda, H.; Mukoyama, S.; Asada, N.; Chiba, T. Detection of subtle tectonic–geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey. Geomorphology 2013, 182, 104–115. [Google Scholar] [CrossRef]
- Schoenbohm, L.M.; Burchfiel, B.C.; Liangzhong, C. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology 2006, 34, 813–816. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.-K.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Space Phys. 2005, 110, 110. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Burchfiel, B.C.; Royden, L.H.; Chen, L.; Chen, J.; Li, W.; Chen, Z. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geol. Soc. Am. Bull. 1998, 112, 413–423. [Google Scholar] [CrossRef]
- He, H.L.; Yasutaka, T.; Song, F.M.; Dong, X.Q. Late Quaternary slip rate of the Xiaojiang fault and its implication. Seism. Geol. 2002, 24, 14–26. (In Chinese) [Google Scholar]
- Shen, J.; Wang, Y.; Song, F. Characteristics of the active Xiaojiang fault zone in Yunnan, China: A slip boundary for the southeastward escaping Sichuan–Yunnan Block of the Tibetan Plateau. J. Asian Earth Sci. 2003, 21, 1085–1096. [Google Scholar]
- Song, F.M.; Wang, Y.P.; Yu, W.X.; Cao, Z.Q.; Shen, X.H.; Shen, J. Xiaojiang Active Fault; Seimological Publishing Press: Beijing, China, 1998; pp. 1–237. (In Chinese) [Google Scholar]
- He, H.L.; Fang, Z.; Li, P. A preliminary approach to the fault activity of southern segment on Xiaojiang west branch fault. J. Seismol. Res. 1993, 16, 291–298, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Zhang, B.; Hou, J.; Xu, X. Structure and tectonic geomorphology of the Qujiang fault at the intersection of the Ailao Shan–Red River fault and the Xianshuihe–Xiaojiang fault system, China. Tectonophysics 2014, 634, 156–170. [Google Scholar] [CrossRef]
- Wen, X.; Du, F.; Long, F.; Fan, J.; Zhu, H. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China. Sci. China Earth Sci. 2011, 54, 1563–1575. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, Q.; Zhang, G.; Jin, M.; Gan, W.; Wei, M.; Mao, F.; Qi, W. Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Earth Sci. 2003, 46, 13–24. [Google Scholar]
- Wu, Z.H.; Long, C.X.; Fan, T.Y.; Zhou, C.J.; Feng, H.; Yang, Z.Y.; Tong, Y.B. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism. Geol. Bull. China 2015, 34, 1–31, (In Chinese in English Abstract). [Google Scholar]
- Wang, Y.; Wang, E.; Shen, Z.; Wang, M.; Gan, W.; Qiao, X.; Meng, G.; Li, T.; Tao, W.; Yang, Y.; et al. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2008, 51, 1267–1283. [Google Scholar] [CrossRef]
- Han, Z.J.; Dong, S.P.; Mao, Z.B.; Hu, N.; Tan, X.B.; Yuan, R.M.; Guo, P. The Holocene activity and strike-slip rate of the southern segment of Xiaojiang fault in the southeastern Yunnan region, China. Seism. Geol. 2017, 39, 1–19, (In Chinese with English Abstract). [Google Scholar]
- He, H.; Ran, H.; Yasutaka, I. Uniform strike-slip rate along the Xianshuihe-Xiaojiang fault system and its implications for active tectonics in southeastern Tibet. Acta Geol. Sin. 2006, 80, 376–386. [Google Scholar]
- Li, X.; Ran, Y.; Chen, L.; Wu, F.; Ma, X.; Cao, J. Late Quaternary Large Earthquakes on the Western Branch of the Xiaojiang Fault and Their Tectonic Implications. Acta Geol. Sinica 2015, 89, 1516–1530. [Google Scholar]
- Xu, X.W.; Han, Z.; Yang, X.; Zhang, S.; Yu, G.; Zhou, B.; Li, F.; Ma, B.; Chen, G.; Ran, Y. Seimotectonic Map of China and Its Adjacent Regions; Seismological Publishing Press: Beijing, China, 2016. [Google Scholar]
- Royden, L.H.; Burchfiel, B.C.; Van Der Hilst, R.D. The Geological Evolution of the Tibetan Plateau. Science 2008, 321, 1054–1058. [Google Scholar] [CrossRef] [Green Version]
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809. [Google Scholar] [CrossRef]
- Xu, X.W.; Wen, X.Z.; Zheng, R.Z.; Ma, W.T.; Song, F.M.; Yu, G.H. The structural styles and dynamic source of Sichuan–Yunnan Rhombic Block. Sci. China Ser. D-Earth Sci. 2003, 33, 151–162. (In Chinese) [Google Scholar]
- Zhang, P.Z.; Deng, Q.D.; Zhang, Z.Q.; Li, H.B. Active faults, earthquake hazards and associated geodynamic processes in continental China. Sci. China Earth Sci. 2013, 43, 1607–1620. (In Chinese) [Google Scholar]
- Liang, S.; Gan, W.; Shen, C.; Xiao, G.; Liu, J.; Chen, W.; Ding, X.; Zhou, D. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid Earth 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Yu, W.X.; Wang, Y.P.; Wang, B.; Song, F.M.; Xie, Y.Q. Paleoearthquake and the current risk study on the west branch of the Xiaojiang fault in Yunnan. J. Seism. Res. 2004, 27, 29–32, (In Chinese with English Abstract). [Google Scholar]
- Min, Z.; Wu, G.; Jiang, Z.; Liu, C.; Yang, Y. Catalog of Chinese Historic Strong Earthquakes from BC 2300 to AD 1911; Seismological Publishing Press: Beijing, China, 1995; p. 514. (In Chinese) [Google Scholar]
- Ren, Z. Geometry and deformation features of the most recent co-seismic surface ruptures along the Xiaojiang Fault and its tectonic implications for the Tibetan Plateau. J. Asian Earth Sci. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Wang, S.; Wu, G.; Shi, Z. Catalog of Chinese Modern Earthquakes with M ≥ 4.7 from AD 1912 to 1990; China Science and Technology Press: Beijing, China, 1999; p. 637. (In Chinese) [Google Scholar]
- Guo, P.; Han, Z.; Dong, S.; Yuan, R.; Xie, Z. Surface rupture and slip distribution along the Lenglongling fault in the NE Tibetan Plateau: Implications for faulting behavior. J. Asian Earth Sci. 2019, 172, 190–207. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.; Akciz, S.O. High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seism. Soc. Am. 2012, 102, 1135–1154. [Google Scholar] [CrossRef]
- Madden, C.; Haddad, D.E.; Salisbury, J.B. Appendix R: Compilation of Slip in the Last Event Data and Analysis of Last Event, Repeated Slip, and Average Displacement for Recent and Prehistoric Ruptures; US Geological Survey Open-File Report: Los Angeles, CA, USA, 2013; p. 1165.
- McGill, S.F.; Sieh, K. Surficial offsets on the Central and Eastern Garlock Fault associated with prehistoric earthquakes. J. Geophys. Res. Space Phys. 1991, 96, 21597–21621. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.; Akçiz, S.O. Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault. Science 2010, 327, 1119–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, H.; Zheng, W.; Lei, Q.; Zeng, J.; Zhang, P.; Chen, G. Surface Slip Distribution Along the West Helanshan Fault, Northern China, and Its Implications for Fault Behavior. J. Geophys. Res. Solid Earth 2020, 125, 019983. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, Z.; Chen, T.; Yan, S.; Yin, J.; Zhang, P.; Zheng, W.; Zhang, H.; Li, C. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes. GSA Bull. 2015, 128, B31155.1–18. [Google Scholar] [CrossRef]
- Li, H.; Van der Woerd, J.; Sun, Z.; Si, J.; Tapponnier, P.; Pan, J.; Liu, D.; Chevalier, M.-L. Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet. Gondwana Res. 2012, 21, 64–87. [Google Scholar] [CrossRef] [Green Version]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Sieh, K.; Jones, L.; Hauksson, E.; Hudnut, K.; Eberhart-Phillips, D.; Heaton, T.; Hough, S.; Hutton, K.; Kanamori, H.; Lilje, A.; et al. Near-Field Investigations of the Landers Earthquake Sequence, April to July 1992. Science 1993, 260, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yu, G.; Klinger, Y.; Tapponnier, P.; Van Der Woerd, J. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China. J. Geophys. Res. Space Phys. 2006, 111, 111. [Google Scholar] [CrossRef] [Green Version]
- Ward, S.N. Dogtails versus rainbows: Synthetic earthquake rupture models as an aid in interpreting geological data. Bull. Seism. Soc. Am. 1997, 87, 1422–1441. [Google Scholar]
- Hu, C.; Henderson, G.M.; Huang, J.; Xie, S.; Sun, Y.; Johnson, K.R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 2008, 266, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Haberle, S.G.; Shen, J.; Yang, X.; Han, Y.; Zhang, E.; Wang, S. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat. Sci. Rev. 2014, 86, 35–48. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; Dong, S.; Mao, Z.; Hu, N.; Gao, F.; Li, J. Latest Quaternary Active Faulting and Paleoearthquakes on the Southern Segment of the Xiaojiang Fault Zone, SE Tibetan Plateau. Lithosphere 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Qian, H.; Luo, Z.L.; Wen, X.Z. Preliminary study of characteristic earthquakes in the Xianshuihe fault zone. Acta Seisml. Sin. 1990, 12, 22–29, (In Chinese with English Abstract). [Google Scholar]
- Liang, M.J. Characteristics of the Late-Quaternary Fault Activity of the Xianshuihe Fault. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2019. [Google Scholar]
- Rockwell, T. The non-regularity of earthquake recurrence in California: Lessons from long paleoseismic records from the San Andreas and San Jacinto faults in southern California, and the north Anatolian fault in Turkey. In Proceedings of the International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 5, Bengaluru, India, 13–16 July 2020; Missouri University of Science and Technology: San Diego, CA, USA, May 2010. [Google Scholar]
- Schwartz, D.P.; Coppersmith, K.J. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. J. Geophys. Res. Space Phys. 1984, 89, 5681–5698. [Google Scholar] [CrossRef]
- He, J.; Xia, W.; Lu, S.; Qian, H. Three-dimensional finite element modeling of stress evolution around the Xiaojiang fault system in the southeastern Tibetan plateau during the past ~500years. Tectonophysics 2011, 507, 70–85. [Google Scholar] [CrossRef]
- Zhu, X.J.; He, J.K. Coulomb Stress Change on the Xiaojiang and the Red River Faults, Southeastern Tibetan Plateau, from the 1970 Tonghai MS7.7 Earthquake. J. Geod. Geodyn. 2019, 39, 1223–1227. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Han, Z.; Dong, S.; Gao, F.; Li, J. New Constraints on Slip Behavior of the Jianshui Strike-Slip Fault from Faulted Stream Channel Risers and Airborne Lidar Data, SE Tibetan Plateau, China. Remote Sens. 2021, 13, 2019. https://doi.org/10.3390/rs13102019
Guo P, Han Z, Dong S, Gao F, Li J. New Constraints on Slip Behavior of the Jianshui Strike-Slip Fault from Faulted Stream Channel Risers and Airborne Lidar Data, SE Tibetan Plateau, China. Remote Sensing. 2021; 13(10):2019. https://doi.org/10.3390/rs13102019
Chicago/Turabian StyleGuo, Peng, Zhujun Han, Shaopeng Dong, Fan Gao, and Jiani Li. 2021. "New Constraints on Slip Behavior of the Jianshui Strike-Slip Fault from Faulted Stream Channel Risers and Airborne Lidar Data, SE Tibetan Plateau, China" Remote Sensing 13, no. 10: 2019. https://doi.org/10.3390/rs13102019
APA StyleGuo, P., Han, Z., Dong, S., Gao, F., & Li, J. (2021). New Constraints on Slip Behavior of the Jianshui Strike-Slip Fault from Faulted Stream Channel Risers and Airborne Lidar Data, SE Tibetan Plateau, China. Remote Sensing, 13(10), 2019. https://doi.org/10.3390/rs13102019