Li, K.-Y.; Burnside, N.G.; Sampaio de Lima, R.; Villoslada Peciña, M.; Sepp, K.; Yang, M.-D.; Raet, J.; Vain, A.; Selge, A.; Sepp, K.
The Application of an Unmanned Aerial System and Machine Learning Techniques for Red Clover-Grass Mixture Yield Estimation under Variety Performance Trials. Remote Sens. 2021, 13, 1994.
https://doi.org/10.3390/rs13101994
AMA Style
Li K-Y, Burnside NG, Sampaio de Lima R, Villoslada Peciña M, Sepp K, Yang M-D, Raet J, Vain A, Selge A, Sepp K.
The Application of an Unmanned Aerial System and Machine Learning Techniques for Red Clover-Grass Mixture Yield Estimation under Variety Performance Trials. Remote Sensing. 2021; 13(10):1994.
https://doi.org/10.3390/rs13101994
Chicago/Turabian Style
Li, Kai-Yun, Niall G. Burnside, Raul Sampaio de Lima, Miguel Villoslada Peciña, Karli Sepp, Ming-Der Yang, Janar Raet, Ants Vain, Are Selge, and Kalev Sepp.
2021. "The Application of an Unmanned Aerial System and Machine Learning Techniques for Red Clover-Grass Mixture Yield Estimation under Variety Performance Trials" Remote Sensing 13, no. 10: 1994.
https://doi.org/10.3390/rs13101994
APA Style
Li, K.-Y., Burnside, N. G., Sampaio de Lima, R., Villoslada Peciña, M., Sepp, K., Yang, M.-D., Raet, J., Vain, A., Selge, A., & Sepp, K.
(2021). The Application of an Unmanned Aerial System and Machine Learning Techniques for Red Clover-Grass Mixture Yield Estimation under Variety Performance Trials. Remote Sensing, 13(10), 1994.
https://doi.org/10.3390/rs13101994