Multi-Sector Oriented Object Detector for Accurate Localization in Optical Remote Sensing Images
Abstract
:1. Introduction
- We proposed an innovative representation, i.e., quadrant sectors, for AOBBs in ORSIs. The proposed representation of AOBBs addresses the ambiguity problem of the boundary and the angle well, while enhancing the convergence performance of the network;
- We proposed a classification-to-regression strategy to obtain the accurate localization of the ORSI targets with discrete scale and angular sectors. This strategy makes it easier for the network to learn the scale and orientation information of the AOBB;
- We designed a smooth angular-sector label (SASL) that smoothly distributes label values with a definite tolerance radius. With this label, the missed rate and detection accuracy are dramatically improved;
- To obtain a more accurate confidence of the detected boxes, we proposed the fusion of classification and localization information and thus achieved promising results on the DOTA, HRSC2016, and UCAS-AOD data sets.
2. Related Works
2.1. Axis-Aligned Object Detection in ORSIs
2.1.1. Multi-Stage Object Detection Method
2.1.2. One-Stage Object Detection Methods
2.2. Arbitrarily Oriented Object Detection in ORSIs
2.2.1. Anchor-Based Object Detection Method
2.2.2. Anchor-Free Object Detection Method
2.3. Localization-Guided Detection Confidence
3. Methodology
3.1. Multi-Level Feature Extraction Network
3.2. Classification Branch of the Prediction Head
3.3. Localization Branch of the Prediction Head
3.3.1. Multi-Sector Design
3.3.2. Quadrant Sector
3.3.3. Scale Sector
3.3.4. Angular Sector
3.4. Localization-Aided Detection Score
3.5. Loss Function
3.5.1. Classification Loss
3.5.2. Sector Classification Loss
3.5.3. Sector Regression Loss
4. Experiments and Results Analysis
4.1. Data Sets and Evaluation Metrics
4.1.1. DOTA Data Set
4.1.2. HRS2016 Data Set
4.1.3. UCAS-AOD Data Set
4.1.4. Evaluation Metrics
4.2. Experimental Details and Network Inference
4.2.1. Experimental Details
4.2.2. Network Inference
4.3. Ablation Study
4.3.1. SASL
4.3.2. LADS
4.4. Analysis of High Parameters
4.4.1. Smooth Radius of SASL
4.4.2. Trade-off Factor of LADS
4.4.3. Numbers of Scale and Angular Sectors
4.5. Comparison with State-of-the-Art Detectors
4.5.1. DOTA
4.5.2. UCAS-AOD
4.5.3. HRSC2016
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1 Scale offset calculation procedure. |
Input: : coordinates of the four vertexes of the input bounding box. : coordinates of the regression point associated with . |
Output: regression scale offset target for four quadrants ; |
|
Algorithm A2 Smooth angular-sector label generation. |
Input: : each angular sector of the ground truth; the ground truth angle; |
Parameter: smooth radius R = 5; angular-sector interval ; sector number M = 90 |
Output: the smooth angular-sector label of |
|
References
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Shi, F.; Zhang, T.; Zhang, T. Orientation-Aware Vehicle Detection in Aerial Images via an Anchor-Free Object Detection Approach. IEEE Trans. Geosci. Remote Sens. 2020, 1–13. [Google Scholar] [CrossRef]
- Yi, J.; Wu, P.; Liu, B.; Huang, Q.; Qu, H.; Metaxas, D. Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 2150–2159. [Google Scholar]
- Wei, H.; Zhang, Y.; Chang, Z.; Li, H.; Wang, H.; Sun, X. Oriented objects as pairs of middle lines. ISPRS J. Photogramm. Remote Sens. 2020, 169, 268–279. [Google Scholar] [CrossRef]
- Qian, W.; Yang, X.; Peng, S.; Guo, Y.; Yan, J. Learning modulated loss for rotated object detection. arXiv 2019, arXiv:1911.08299. [Google Scholar]
- Wang, J.; Yang, W.; Li, H.C.; Zhang, H.; Xia, G.S. Learning Center Probability Map for Detecting Objects in Aerial Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4307–4323. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J. Arbitrary-Oriented Object Detection with Circular Smooth Label. arXiv 2020, arXiv:2003.05597. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Corfu, Greece, 20–25 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar]
- Zhang, W.; Wang, S.; Thachan, S.; Chen, J.; Qian, Y. Deconv R-CNN for small object detection on remote sensing images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2483–2486. [Google Scholar]
- Yang, F.; Fan, H.; Chu, P.; Blasch, E.; Ling, H. Clustered object detection in aerial images. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 8311–8320. [Google Scholar]
- Wang, J.; Wang, Y.; Wu, Y.; Zhang, K.; Wang, Q. FRPNet: A Feature-Reflowing Pyramid Network for Object Detection of Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Chen, J.; Wan, L.; Zhu, J.; Xu, G.; Deng, M. Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2019, 17, 681–685. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Yuan, Y.; Feng, Y. Gated and Axis-Concentrated Localization Network for Remote Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2019, 58, 179–192. [Google Scholar] [CrossRef]
- Xu, D.; Wu, Y. MRFF-YOLO: A Multi-Receptive Fields Fusion Network for Remote Sensing Target Detection. Remote Sens. 2020, 12, 3118. [Google Scholar] [CrossRef]
- Yin, R.; Zhao, W.; Fan, X.; Yin, Y. AF-SSD: An Accurate and Fast Single Shot Detector for High Spatial Remote Sensing Imagery. Sensors 2020, 20, 6530. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Chen, G.; Shang, Y. Adaptive Saliency Biased Loss for Object Detection in Aerial Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7154–7165. [Google Scholar] [CrossRef]
- Ruan, L.; Gao, B.; Wu, S.; Woo, W.L. DeftectNet: Joint loss structured deep adversarial network for thermography defect detecting system. Neurocomputing 2020, 417, 441–457. [Google Scholar] [CrossRef]
- Hu, B.; Gao, B.; Woo, W.L.; Ruan, L.; Jin, J.; Yang, Y.; Yu, Y. A Lightweight Spatial and Temporal Multi-Feature Fusion Network for Defect Detection. IEEE Trans. Image Process. 2020, 30, 472–486. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Weng, L.; Yang, Y. Rotated region based CNN for ship detection. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 900–904. [Google Scholar]
- Azimi, S.M.; Vig, E.; Bahmanyar, R.; Körner, M.; Reinartz, P. Towards multi-class object detection in unconstrained remote sensing imagery. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; pp. 150–165. [Google Scholar]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning RoI transformer for oriented object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2849–2858. [Google Scholar]
- Zhang, Z.; Guo, W.; Zhu, S.; Yu, W. Toward arbitrarily oriented ship detection with rotated region proposal and discrimination networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1745–1749. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, S.; Zhang, W. Cad-net: A context-aware detection network for objects in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10015–10024. [Google Scholar] [CrossRef] [Green Version]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 6569–6578. [Google Scholar]
- Chen, J.; Xie, F.; Lu, Y.; Jiang, Z. Finding Arbitrary-Oriented Ships From Remote Sensing Images Using Corner Detection. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1712–1716. [Google Scholar] [CrossRef]
- Song, Q.; Yang, F.; Yang, L.; Liu, C.; Hu, M.; Xia, L. Learning Point-guided Localization for Detection in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1084–1094. [Google Scholar] [CrossRef]
- He, X.; Ma, S.; He, L.; Ru, L. High-Resolution Polar Network for Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Zhu, P.; Zhang, T.; Li, C.; Jiao, L. GRS-Det: An Anchor-Free Rotation Ship Detector Based on Gaussian-Mask in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3518–3531. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Y.; Deng, Y.; Yu, Y. Densebox: Unifying landmark localization with end to end object detection. arXiv 2015, arXiv:1509.04874. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE International Conference on Computer Vision, Thessaloniki, Greece, 23–25 September 2019; pp. 9627–9636. [Google Scholar]
- Lin, Y.; Feng, P.; Guan, J. Ienet: Interacting embranchment one stage anchor free detector for orientation aerial object detection. arXiv 2019, arXiv:1912.00969. [Google Scholar]
- Feng, P.; Lin, Y.; Guan, J.; He, G.; Shi, H.; Chambers, J. TOSO: Student’sT Distribution Aided One-Stage Orientation Target Detection in Remote Sensing Images. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 4057–4061. [Google Scholar]
- Xiao, Z.; Qian, L.; Shao, W.; Tan, X.; Wang, K. Axis Learning for Orientated Objects Detection in Aerial Images. Remote Sens. 2020, 12, 908. [Google Scholar] [CrossRef] [Green Version]
- Tychsen-Smith, L.; Petersson, L. Improving object localization with fitness nms and bounded iou loss. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6877–6885. [Google Scholar]
- Jiang, B.; Luo, R.; Mao, J.; Xiao, T.; Jiang, Y. Acquisition of localization confidence for accurate object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–799. [Google Scholar]
- Zhu, B.; Song, Q.; Yang, L.; Wang, Z.; Liu, C.; Hu, M. CPM R-CNN: Calibrating Point-guided Misalignment in Object Detection. arXiv 2020, arXiv:2003.03570. [Google Scholar]
- Wu, S.; Li, X.; Wang, X. IoU-aware single-stage object detector for accurate localization. Image Vision Comput. 2020, 97, 103911. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Xia, G.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3974–3983. [Google Scholar]
- Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1074–1078. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional neural network. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3735–3739. [Google Scholar]
- Yang, X.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic Ship Detection of Remote Sensing Images from Google Earth in Complex Scenes Based on Multi-Scale Rotation Dense Feature Pyramid Networks. Remote Sens. 2018, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Zhong, X.; Zhu, R.; Zhang, X.; Li, Z.; Li, M. Single Shot Anchor Refinement Network for Oriented Object Detection in Optical Remote Sensing Imagery. IEEE Access 2019, 7, 87150–87161. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; Yan, J.; Li, A.; Zhang, Z.; Yu, G. R3det: Refined single-stage detector with feature refinement for rotating object. arXiv 2019, arXiv:1908.05612. [Google Scholar]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhu, X.; Wang, X.; Yang, S.; Li, W.; Wang, H.; Fu, P.; Luo, Z. R2cnn: Rotational region cnn for orientation robust scene text detection. arXiv 2017, arXiv:1706.09579. [Google Scholar]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. Scrdet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the IEEE International Conference on Computer Vision, Thessaloniki, Greece, 23–25 September 2019; pp. 8232–8241. [Google Scholar]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 1452–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Yuan, L.; Weng, L.; Yang, Y. A high resolution optical satellite image dataset for ship recognition and some new baselines. In Proceedings of the International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 24–26 February 2017; Volume 2, pp. 324–331. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Liao, M.; Zhu, Z.; Shi, B.; Xia, G.S.; Bai, X. Rotation-Sensitive Regression for Oriented Scene Text Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
0.01 | 0.1 | 0.2 | 0.5 | 0.75 | 1 | |
---|---|---|---|---|---|---|
Plane | 97.14 | 97.10 | 98.06 | 97.81 | 97.31 | 97.15 |
Car | 94.20 | 93.14 | 94.36 | 94.85 | 94.65 | 94.63 |
mAP | 95.67 | 95.12 | 96.21 | 96.33 | 95.98 | 95.89 |
Model | Plane (%) | Car (%) | mAP (%) |
---|---|---|---|
R-DFPN [52] | 95.60 | 82.50 | 89.20 |
ARN [53] | 97.60 | 92.20 | 94.90 |
RetinaNet-H [54] | 97.34 | 93.60 | 95.47 |
ICN [28] | - | - | 95.67 |
Det [54] | 98.20 | 94.14 | 96.17 |
WPSGA-Net [9] | 97.86 | 94.66 | 96.26 |
MS-Det (Baseline) | 92.67 | 88.45 | 90.56 |
MS-Det w/o SASL | 94.73 | 90.83 | 92.78 |
MS-Det w/o LADS | 96.62 | 91.34 | 93.98 |
MS-Det | 97.81 | 94.85 | 96.33 |
Parameters | Value | Recall | Precision | F1-Score | AP |
---|---|---|---|---|---|
0 | 0.9123 | 0.7985 | 0.8516 | 0.8672 | |
1 | 0.9245 | 0.8012 | 0.8584 | 0.8864 | |
(a) R | 3 | 0.9367 | 0.8133 | 0.8706 | 0.8992 |
() | 5 | 0.9323 | 0.8265 | 0.8762 | 0.9021 |
7 | 0.9208 | 0.7956 | 0.8536 | 0.8834 | |
1 | 0.9023 | 0.7887 | 0.8417 | 0.8872 | |
0.8 | 0.9167 | 0.7988 | 0.8537 | 0.8956 | |
(b) | 0.6 | 0.9302 | 0.8056 | 0.8634 | 0.8922 |
() | 0.4 | 0.9323 | 0.8265 | 0.8762 | 0.9021 |
0.2 | 0.9216 | 0.8078 | 0.8610 | 0.8991 | |
0 | 0.9045 | 0.7894 | 0.8430 | 0.8825 |
M | N | mAP | M | N | mAP | M | N | mAP |
---|---|---|---|---|---|---|---|---|
2 | 0.8308 | 2 | 0.8597 | 2 | 0.8490 | |||
3 | 0.8578 | 3 | 0.8709 | 3 | 0.8516 | |||
45 | 4 | 0.8745 | 90 | 4 | 0.8823 | 180 | 4 | 0.8772 |
5 | 0.8818 | 5 | 0.9021 | 5 | 0.8872 | |||
6 | 0.8589 | 6 | 0.8792 | 6 | 0.8352 |
Method | Backbone | AF | Pl | Bd | Br | Gft | Sv | Lv | Sh | Tc | Bc | St | Sbf | Ra | Ha | Sp | He | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FR-O [49] | RN101-F | × | 79.09 | 69.12 | 17.17 | 63.49 | 34.20 | 37.16 | 36.20 | 89.19 | 69.60 | 58.96 | 49.47 | 52.52 | 46.69 | 44.80 | 46.30 | 52.93 |
TOSO [41] | RN101-F | ✓ | 80.17 | 65.59 | 39.82 | 39.95 | 49.71 | 65.01 | 53.58 | 81.45 | 44.66 | 78.51 | 48.85 | 56.73 | 64.40 | 65.24 | 36.75 | 57.92 |
IENet [40] | RN101-F | ✓ | 57.14 | 80.20 | 65.54 | 39.82 | 32.07 | 49.71 | 65.01 | 52.58 | 81.45 | 44.66 | 78.51 | 46.54 | 56.73 | 64.40 | 64.24 | 57.14 |
CNN [56] | VGG16 | × | 80.94 | 65.67 | 35.34 | 67.44 | 59.92 | 50.91 | 55.81 | 90.67 | 66.92 | 72.39 | 55.06 | 52.23 | 55.14 | 53.35 | 48.22 | 60.67 |
RRPN [55] | VGG16 | × | 88.52 | 71.20 | 31.66 | 59.30 | 51.85 | 56.19 | 57.25 | 90.81 | 72.84 | 67.38 | 56.69 | 52.84 | 53.08 | 51.94 | 53.58 | 61.01 |
Axis Learning [42] | RN101-F | ✓ | 79.53 | 77.15 | 38.59 | 61.15 | 67.53 | 70.49 | 76.30 | 89.66 | 79.07 | 83.53 | 47.27 | 61.01 | 56.28 | 66.06 | 36.05 | 65.98 |
ICN [28] | RN101-F | × | 81.40 | 74.30 | 47.70 | 70.30 | 64.90 | 67.80 | 70.00 | 90.80 | 79.10 | 78.20 | 53.60 | 62.90 | 67.00 | 64.20 | 50.20 | 68.20 |
RoI Trans [29] | RN101-F | × | 88.64 | 78.52 | 43.44 | 75.92 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 | 62.83 | 58.93 | 47.67 | 69.56 |
CAD-Net [31] | RN101-F | × | 87.80 | 82.40 | 49.40 | 73.50 | 71.10 | 63.50 | 76.70 | 90.90 | 79.20 | 73.30 | 48.40 | 60.90 | 62.00 | 67.00 | 62.20 | 69.90 |
Det [54] | RN101-F | × | 89.54 | 81.99 | 48.46 | 62.52 | 70.48 | 74.29 | 77.54 | 90.80 | 81.39 | 83.54 | 61.97 | 59.82 | 65.44 | 67.46 | 60.05 | 71.69 |
-DNet [7] | RN101 | ✓ | 89.20 | 76.54 | 48.95 | 67.52 | 71.11 | 75.86 | 78.85 | 90.84 | 78.97 | 78.26 | 61.44 | 60.79 | 59.66 | 63.85 | 64.91 | 71.12 |
SCRDet [57] | RN101-F | × | 89.98 | 80.65 | 52.09 | 68.36 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 65.02 | 66.68 | 66.25 | 68.24 | 65.21 | 72.61 |
Gliding Vertex [58] | RN101-F | × | 89.64 | 85.00 | 52.26 | 77.34 | 73.01 | 73.14 | 86.82 | 90.74 | 79.02 | 86.81 | 59.55 | 70.91 | 72.94 | 70.86 | 57.32 | 75.02 |
WPSGA-Net [9] | RN101-F | ✓ | 89.83 | 84.41 | 54.60 | 70.25 | 77.66 | 78.32 | 87.19 | 90.66 | 84.89 | 85.27 | 56.46 | 69.23 | 74.13 | 71.56 | 66.06 | 76.03 |
OPLD [35] | RN101-F | ✓ | 89.37 | 85.82 | 54.10 | 79.58 | 75.00 | 75.13 | 86.92 | 90.88 | 86.42 | 86.62 | 62.46 | 68.41 | 73.98 | 68.11 | 63.69 | 76.43 |
MS-Det | RN101-F | ✓ | 89.93 | 86.02 | 54.23 | 79.68 | 76.59 | 76.29 | 88.63 | 90.33 | 86.61 | 86.93 | 63.52 | 68.03 | 74.43 | 69.33 | 64.41 | 76.63 |
Model | Anchor-Free | mAP (%) | Params | FPS |
---|---|---|---|---|
TOSO [41] | ✓ | 57.92 | 212.5 MB | 7.75 |
Axis learning [42] | ✓ | 65.98 | 224.7 MB | 7.19 |
-DNet [7] | ✓ | 71.12 | 186.5 MB | 10.23 |
WPSGA-Net [9] | ✓ | 76.03 | 251.7 MB | 6.65 |
RoI Trans [29] | × | 69.56 | 273.0 MB | 5.16 |
Det [54] | × | 71.69 | 277.0 MB | 4.56 |
SCRDet [57] | × | 72.61 | 285.0 MB | 3.37 |
OPLD [35] | × | 76.43 | 268.5 MB | 5.28 |
MS-Det | ✓ | 76.63 | 218.5 MB | 7.67 |
Model | Backbone | Resolution | Data Aug. | mAP (%) |
---|---|---|---|---|
CNN [56] | ResNet101-FPN | 800 × 800 | × | 73.07 |
RC1&RC2 [59] | ResNet101-FPN | 800 × 800 | × | 78.15 |
Axis learning [42] | ResNet101-FPN | 800 × 800 | × | 78.15 |
RRPN [55] | ResNet101-FPN | 800 × 800 | × | 79.08 |
PN [30] | VGG16 [60] | 800 × 800 | ✓ | 79.60 |
RetinaNet-H [54] | ResNet101-FPN | 800 × 800 | ✓ | 82.89 |
RRD [61] | VGG16 [60] | 384 × 384 | ✓ | 82.89 |
RoI Trans [29] | ResNet101-FPN | 512 × 800 | × | 86.20 |
Det [54] | ResNet101-FPN | 800 × 800 | ✓ | 89.14 |
Gliding Vertex [58] | ResNet101-FPN | 512 × 800 | × | 88.20 |
GRS-Det [37] | ResNet101-FPN | 800 × 800 | ✓ | 89.57 |
MS-Det | ResNet101-FPN | 800 × 800 | ✓ | 90.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Ma, S.; He, L.; Ru, L.; Wang, C. Multi-Sector Oriented Object Detector for Accurate Localization in Optical Remote Sensing Images. Remote Sens. 2021, 13, 1921. https://doi.org/10.3390/rs13101921
He X, Ma S, He L, Ru L, Wang C. Multi-Sector Oriented Object Detector for Accurate Localization in Optical Remote Sensing Images. Remote Sensing. 2021; 13(10):1921. https://doi.org/10.3390/rs13101921
Chicago/Turabian StyleHe, Xu, Shiping Ma, Linyuan He, Le Ru, and Chen Wang. 2021. "Multi-Sector Oriented Object Detector for Accurate Localization in Optical Remote Sensing Images" Remote Sensing 13, no. 10: 1921. https://doi.org/10.3390/rs13101921
APA StyleHe, X., Ma, S., He, L., Ru, L., & Wang, C. (2021). Multi-Sector Oriented Object Detector for Accurate Localization in Optical Remote Sensing Images. Remote Sensing, 13(10), 1921. https://doi.org/10.3390/rs13101921