New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maps and Datasets
2.1.1. FD Maps
2.1.2. LCC Maps
2.1.3. AGB Maps
2.2. Fire CO2 Emissions
2.3. Data Analysis
3. Results
3.1. Burned Area
3.2. Global CO2 Emissions Estimation Results
3.3. Comparison of Annual CO2 Emissions with Previous Research
3.4. Regional Evaluations
4. Discussions
4.1. Burned Area
4.2. Global CO2 Emissions Estimation
4.3. Comparison of Annual CO2 Emissions with Previous Research
4.4. Regional Evaluations
4.5. Evaluation of Estimation Method
4.6. Uncertainty
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neto, T.G.S.; Carvalho, J.A.; Veras, C.A.G.; Alvarado, E.C.; Gielow, R.; Lincoln, E.N.; Christian, T.J.; Yokelson, R.J.; Santos, J.C. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. Atmos. Environ. 2009, 43, 438–446. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.H.; Tsay, S.C.; Maring, H.B.; Yen, M.C.; Sheu, G.R.; Wang, S.H.; Chi, K.H.; Chuang, M.T.; Ou-Yang, C.F.; Fu, J.S.; et al. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ. 2013, 78, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; Defries, R.S.; Jin, Y.; Van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Randerson, J.T.; Morton, D.C.; Defries, R.S.; Collatz, G.J.; Kasibhatla, P.S.; Giglio, L.; Jin, Y.; Marlier, M.E. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science 2011, 334, 787–791. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, G.R.; Morton, D.C.; Defries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- Morton, D.C.; Defries, R.S.; Randerson, J.T.; Giglio, L.; Schroeder, W.; van der Werf, G.R. Agricultural intensification increases deforestation fire activity in Amazonia. Glob. Chang. Biol. 2008, 14, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Radke, L.F.; Stith, J.L.; Hegg, D.A.; Hobbs, P.V. Airborne Studies of Particles and Gases from Forest Fires. J. Air Pollut. Control Assoc. 1978, 28, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Seiler, W.; Crutzen, P.J. Estimates of Gross and Net Fluxes of Carbon Between. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Duncan, B.N. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Giglio, L.; Kasibhatla, P.S.; Arellano, A.F., Jr.; Olsen, S.C.; Kasischke, E.S. Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period. Science 2004, 303, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.; Avitabile, V.; Heuvelink, G.B.M.; Wang, J.; Herold, M. Fusion of pan-tropical biomass maps using weighted averaging andregional calibration data. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 13–24. [Google Scholar] [CrossRef]
- Avitabile, V.; Herold, M.; Heuvelink, G.B.M.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Ashton, P.S.; Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 2016, 22, 1406–1420. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Rémy, S.; Veira, A.; Paugam, R.; Sofiev, M.; Kaiser, J.W.; Marenco, F.; Burton, S.P.; Benedetti, A.; Engelen, R.J.; Ferrare, R.; et al. Two global data sets of daily fire emission injection heights since 2003. Atmos. Chem. Phys. 2017, 17, 2921–2942. [Google Scholar] [CrossRef] [Green Version]
- Di Giuseppe, F.; Rémy, S.; Pappenberger, F.; Wetterhall, F. Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations. Atmos. Chem. Phys. 2018, 18, 5359–5370. [Google Scholar] [CrossRef] [Green Version]
- Bartalev, S.A.; Belward, A.S.; Erchov, D.V.; Isaev, A.S. A new SPOT4-VEGETATION derived land cover map of Northern Eurasia. Int. J. Remote Sens. 2003, 24, 1977–1982. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.; Wynne, K.K. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model. Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Arino, O.; Muriel, S.; Piccolini, I.; Rosaz, J.M. The ers-2 atsr-2 world fire atlas and the ers-2 atsr-2 world burnt surface atlas projects. In Proceedings of the 8th ISPRS Conference on Physical Measurement and Signatures in Remote Sensing, Aussois, France, 8–12 January 2001. [Google Scholar]
- Tansey, K.; Grégoire, J.-M.; Binaghi, E.; Boschetti, L.; Brivio, P.A.; Ershov, D.; Flasse, S.; Fraser, R.; Graetz, D.; Maggi, M.; et al. A global inventory of burned areas at 1 km resolution for the year 2000 derived from spot vegetation data. Clim. Chang. 2004, 67, 345–377. [Google Scholar] [CrossRef]
- Mieville, A.; Granier, C.; Liousse, C.; Guillaume, B.; Mouillot, F.; Lamarque, J.F.; Grégoire, J.M.; Pétron, G. Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmos. Environ. 2010, 44, 1469–1477. [Google Scholar] [CrossRef]
- Shi, Y.; Matsunaga, T.; Saito, M.; Yamaguchi, Y.; Chen, X. Comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from multiple satellite products. Environ. Pollut. 2015, 206, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.; Giglio, L.; Boschetti, L.; Roy, D.; Csiszar, I. Algorithm Technical Background Document; NASA: Washington, DC, USA, 2006.
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giglio, L. MODIS Collection 6 Active Fire Product User’s Guide Revision A; Department of Geographical Sciences, NASA: Washington, DC, USA, 2015. [CrossRef]
- Strahler, A.; Gopal, S.; Lambin, E.; Moody, A. MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD) Version 5.0; NASA: Washington, DC, USA, 1999.
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Carvalhais, N.; Rozendaal, D.; Herold, M.; Avitabile, V.; Quegan, S.; et al. A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations. Geophysical Research Abstracts, 20, EGU2018-18932. Geophys. Res. 2018, 20, 18932. [Google Scholar]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- European Space Agency. DUE GlobBiomass Validation Report; European Space Agency: Darmstadt, Germany, 2017. [Google Scholar]
- Quegan, S.; Rauste, Y.; Bouvet, A.; Carreiras, J.; Cartus, O.; Carvalhais, N.; LeToan, T.; Mermoz, S.; Santoro, M. D6–Global Biomass Map Algorithm Theoretical Basis Document (Incorporating the Design Justification File D7); European Space Agency: Darmstadt, Germany, 2017. [Google Scholar]
- Michel, C.; Liousse, C.; Grégoire, J.M.; Tansey, K.; Carmichael, G.R.; Woo, J.H. Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. J. Geophys. Res. D Atmos. 2005, 110, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, T.; Hirata, R. Estimation of carbon dioxide emissions from the megafires of Australia in 2019–2020. Sci. Rep. 2021, 11, 8267. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Tansey, K.; Plummer, S.; Mouillot, F.; Laurent, P.; Storm, T.; et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A humandriven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Carbon Project. Supplemental Data of Global Carbon Budget 2019 (Version 1.0); Global Carbon Project: Canberra, Australia, 2019. [Google Scholar] [CrossRef]
- Lucas, R.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.; Bray, S.; et al. An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 576–593. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Xu, J.; Wang, X.; He, H.; Wu, L. CO2 emissions from the 2010 Russian wildfires using GOSAT data. Environ. Pollut. 2017, 226, 60–68. [Google Scholar] [CrossRef]
- Huijnen, V.; Wooster, M.J.; Kaiser, J.W.; Gaveau, D.L.A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; Van Weele, M. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I. Detection rates of the MODIS active fire product in the United States. Remote Sens. Environ. 2008, 112, 2656–2664. [Google Scholar] [CrossRef]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Member, S.; Agrawal, S.; Naumov, S.; Miranda, E.E.D.; Bella, C.M.D.; et al. Validation of the Global Land Cover 2000 Map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1739. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. Emiss. 2011, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Hoelzemann, J.J.; Schultz, M.G.; Brasseur, G.P.; Granier, C.; Simon, M. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. J. Geophys. Res. 2004, 109, D14S04. [Google Scholar] [CrossRef]
- CASTNET: U.S. Environmental Protection Agency Clean Air Markets Division Clean Air Status and Trends Network. Available online: https://www.epa.gov/castnet (accessed on 12 March 2021).
- Shan, C.; Wang, W.; Liu, C.; Sun, Y.; Hu, Q.; Xu, X.; Tian, Y.; Zhang, H.; Morino, I.; Gri, D.W.T.; et al. Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmos. Res. 2019, 222, 25–35. [Google Scholar] [CrossRef] [Green Version]
Products | Period | Average (106 km2) | 1 Standard Deviation (106 km2) |
---|---|---|---|
HC-M (this study) | 2001–2020 | 1.07 (1.08) | 0.11 (0.12) |
NC-M (this study) | 2001–2020 | 3.73 (3.79) | 0.30 (0.31) |
LC-M (this study) | 2001–2020 | 3.92 (3.98) | 0.32 (0.32) |
GFED4.1s | 2001–2016 | 4.67 | 0.42 |
GFED4 | 2001–2016 | 3.38 | 0.29 |
CCI50 | 2001–2016 | 3.80 | 0.29 |
Inventory | LCC Map | AGB Map | FD Map | Average (Pg CO2 year−1) | 1 Standard Deviation (Pg CO2 year−1) |
---|---|---|---|---|---|
MWN | MCD12Q1 | GEOCARBON | NC-M | 6.30 (6.33) | 0.67 (0.65) |
MWL | LC-M | 6.64 (6.66) | 0.72 (0.70) | ||
MEN | Globbiomass | NC-M | 13.8 (13.8) | 0.77 (0.81) | |
MEL | LC-M | 14.5 (14.4) | 0.83 (0.87) | ||
GWN | GLC2000 | GEOCARBON | NC-M | 3.60 (3.62) | 0.67 (0.70) |
GWL | LC-M | 3.81 (3.83) | 0.72 (0.75) | ||
GEN | Globbiomass | NC-M | 9.04 (9.00) | 0.60 (0.63) | |
GEL | LC-M | 9.48 (9.43) | 0.65 (0.69) | ||
Average | 8.40 (8.39) | 0.70 (0.60) |
Inventory | Period | Average (Pg CO2 year−1) | 1 Standard Deviation (Pg CO2 year−1) |
---|---|---|---|
GFED4.1s | 2001–2019 | 6.97 (6.93) | 0.64 (0.63) |
GFASv1.2 | 2003–2020 | 6.37 (6.44) | 0.72 (0.68) |
FINNv1.5 | 2002–2019 | 5.99 (6.10) | 1.15 (1.09) |
GICC | 2001–2020 | 9.64 (9.65) | 0.66 (0.65) |
Average | 2003–2019 | 7.28 | 0.60 |
Region | Forest (106 km2) | Non-Forest (106 km2) | ||
---|---|---|---|---|
MCD12Q1 | GLC2000 | MCD12Q1 | GLC2000 | |
BONA | 11.6 | 9.9 | 14.2 | 14.9 |
TENA | 4.1 | 4.5 | 7.4 | 7.0 |
CEAM | 1.7 | 1.4 | 1.6 | 1.9 |
NHSA | 3.0 | 2.1 | 0.5 | 1.4 |
SHSA | 10.5 | 7.4 | 7.8 | 10.8 |
EURO | 5.1 | 3.8 | 12.4 | 13.8 |
MIDE | 0.3 | 0.3 | 15.6 | 15.6 |
NHAF | 4.2 | 3.2 | 13.2 | 14.2 |
SHAF | 5.5 | 5.0 | 6.3 | 6.8 |
BOAS | 19.9 | 19.8 | 17.9 | 18.0 |
CEAS | 5.2 | 4.3 | 20.9 | 23.6 |
SEAS | 2.8 | 1.9 | 5.5 | 6.4 |
EQAS | 2.9 | 1.9 | 0.3 | 1.4 |
AUST | 1.5 | 1.5 | 8.9 | 8.8 |
Global | 78.3 | 66.8 | 132.6 | 144.5 |
Region | Average Biomass Densities (kg m−2) | |||||||
---|---|---|---|---|---|---|---|---|
Forest | Non-Forest | |||||||
MCD12Q1 | GLC2000 | MCD12Q1 | GLC2000 | |||||
GEOCARBON | Globbiomass | GEOCARBON | Globbiomass | GEOCARBON | Globbiomass | GEOCARBON | Globbiomass | |
BONA | 3.9 | 6.4 | 4.6 | 6.0 | 0.1 | 0.6 | 0.1 | 1.2 |
TENA | 7.2 | 10.5 | 7.5 | 9.1 | 0.6 | 0.9 | 0.1 | 1.2 |
CEAM | 3.2 | 6.9 | 4.0 | 6.2 | 0.2 | 0.5 | 0.2 | 2.1 |
NHSA | 18.8 | 19.7 | 25.7 | 23.6 | 0.9 | 2.5 | 2.3 | 7.8 |
SHSA | 12.5 | 14.0 | 16.2 | 16.3 | 0.4 | 0.9 | 0.8 | 2.9 |
EURO | 4.8 | 8.0 | 6.4 | 8.5 | 0.1 | 0.5 | 0.1 | 1.0 |
MIDE | 3.4 | 6.8 | 3.9 | 5.8 | 0.0 | 0.1 | 0.0 | 0.1 |
NHAF | 11.6 | 13.0 | 14.4 | 13.6 | 0.0 | 0.8 | 0.2 | 1.5 |
SHAF | 8.1 | 10.1 | 8.5 | 9.8 | 0.2 | 1.8 | 0.4 | 2.6 |
BOAS | 4.8 | 6.5 | 4.9 | 6.2 | 0.2 | 0.7 | 0.2 | 1.2 |
CEAS | 4.0 | 7.1 | 5.3 | 6.9 | 0.1 | 0.3 | 0.1 | 0.6 |
SEAS | 6.0 | 10.4 | 8.6 | 8.8 | 0.2 | 0.5 | 0.3 | 2.4 |
EQAS | 19.8 | 21.0 | 28.3 | 22.7 | 3.7 | 6.6 | 4.4 | 14.4 |
AUST | 11.3 | 10.4 | 13.5 | 9.6 | 0.5 | 0.5 | 0.1 | 0.6 |
Global | 7.6 | 9.7 | 8.7 | 9.4 | 0.2 | 0.6 | 0.2 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiraishi, T.; Hirata, R.; Hirano, T. New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001–2020. Remote Sens. 2021, 13, 1914. https://doi.org/10.3390/rs13101914
Shiraishi T, Hirata R, Hirano T. New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001–2020. Remote Sensing. 2021; 13(10):1914. https://doi.org/10.3390/rs13101914
Chicago/Turabian StyleShiraishi, Tomohiro, Ryuichi Hirata, and Takashi Hirano. 2021. "New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001–2020" Remote Sensing 13, no. 10: 1914. https://doi.org/10.3390/rs13101914
APA StyleShiraishi, T., Hirata, R., & Hirano, T. (2021). New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001–2020. Remote Sensing, 13(10), 1914. https://doi.org/10.3390/rs13101914