Global Positioning System (GPS) Scintillation Associated with a Polar Cap Patch
Abstract
:1. Introduction
2. Data, Methods of Analysis, and Observations
3. Discussion
4. Conclusions
- Most of the amplitude and phase scintillation occurrences were confined to the leading edge of the patch with a limited occurrence inside and trailing edge of the patch.
- The integrity of the scintillation producing irregularities (Fresnel scale) was maintained as the patch convected across the polar cap.
- Scintillation occurrence does not depend on the geometry of the GPS ray path concerning the patch.
- Although the above results seem to indicate that the scintillation is produced through the non-linear evolution of the gradient drift instability mechanism, a thorough modeling approach that can resolve the Fresnel scale is required to fully understand the generation mechanism of radio wave scintillation in the polar region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hevish, A. The diffraction of the radio waves in passing through a phase changing ionosphere. Proc. Roy. Soc. A 1951, 29, 81–96. [Google Scholar]
- Aarons, J. 50 years of radio scintillations observations. IEEE Antennas Propag. Mag. 1997, 39, 7–12. [Google Scholar] [CrossRef]
- Hey, J.S.; Parsons, S.J.; Phillips, J.W. Fluctuations in Cosmic Radiation at Radio-Frequencies. Nature 1946, 158, 234. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M.; De Paula, E.R. GPS and ionospheric scintillations. Space Weather 2007, 5, 09003. [Google Scholar] [CrossRef]
- Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann. Geophys. 2009, 27, 3429–3437. [Google Scholar] [CrossRef]
- Prikryl, P.; Jayachandran, P.T.; Mushini, S.C.; Pokhotelov, D.; MacDougall, J.W.; Donovan, E.; Spanswick, E.; St.-Maurice, J.-P. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Ann. Geophys. 2010, 28, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Prikryl, P.; Jayachandran, P.T.; Mushini, S.C.; Chadwick, R. Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions. Ann. Geophys. 2011, 29, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Moen, J.I.; Oksavik, K.; Spicher, A.; Clausen, L.B.; Miloch, W.J. GPS scintillations associated with cusp dynamics and polar cap patches. J. Space Weather Space Clim. 2017, 7, A23. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.-H.; Jayachandran, P.T.; Moen, J.; Xing, Z.-Y.; Chadwick, R.; Ma, Y.-Z.; Ruohoniemi, J.M.; Lester, M. Experimental Evidence on the Dependence of the Standard GPS Phase Scintillation Index on the Ionospheric Plasma Drift Around Noon Sector of the Polar Ionosphere. J. Geophys. Res. Space Phys. 2018, 123. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, A.M.; Jayachandran, P.T. Determination of the Refractive Contribution to GPS Phase “Scintillation”. J. Geophys. Res. Space Phys. 2019, 124, 1454–1469. [Google Scholar] [CrossRef]
- McCaffrey, A.M.; Jayachandran, P.T. Observation of subsecond variations in auroral region total electron content using 100 Hz sampling of GPS observables. J. Geophys. Res. Space Phys. 2017, 122, 6892–6900. [Google Scholar] [CrossRef]
- Spogli, L.; Ghobadi, H.; Cicone, A.; Alfonsi, L.; Cesaroni, C.; Linty, N.; Romano, V.; Cafaro, M. Adaptive Phase Detrending for GNSS Scintillation Detection: A Case Study over Antarctica. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Forte, B.; Radicella, S.M. Problems in data treatment for ionospheric scintillation measurements. Radio Sci. 2002, 37, 8-1. [Google Scholar] [CrossRef] [Green Version]
- Aarons, J. Global morphology of ionospheric scintillations. Proc. IEEE 1982, 70, 360–378. [Google Scholar] [CrossRef]
- Basu, S.; Groves, K.; Sultan, P. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J. Atmos. Solar-Terr. Phys. 2002, 64, 1745–1754. [Google Scholar] [CrossRef]
- Rino, C.L. A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Sci. 1979, 14, 1135–1145. [Google Scholar] [CrossRef]
- Yeh, K.C.; Liu, C.-H. Radio wave scintillations in the ionosphere. Proc. IEEE 1982, 70, 324–360. [Google Scholar] [CrossRef]
- Keskinen, M.J.; Ossakow, S.L. Theories of high-latitude ionospheric irregularities: A review. Radio Sci. 1983, 18, 1077–1091. [Google Scholar] [CrossRef]
- Tsunoda, R.T. High-latitudeFregion irregularities: A review and synthesis. Rev. Geophys. 1988, 26, 719–760. [Google Scholar] [CrossRef] [Green Version]
- Crowley, G. Critical review of ionospheric patches and blobs. In Review of Radio Science 1993–1996; Stone, W.R., Ed.; URSI: Ghent, Belgium, 1996. [Google Scholar]
- MacDougall, J.; Jayachandran, P.T. Polar patches: Auroral zone precipitation effects. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Newell, P.T.; Liou, K.; Wilson, G.R. Polar cap particle precipitation and aurora: Review and commentary. J. Atmos. Solar-Terr. Phys. 2009, 71, 199–215. [Google Scholar] [CrossRef]
- Jayachandran, P.T.; Hosokawa, K.; MacDougall, J.W.; Mushini, S.; Langley, R.B.; Shiokawa, K. GPS total electron content variations associated with a polar cap arc. J. Geophys. Res. Space Phys. 2009, 114, 12304. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, P.T.; Hosokawa, K.; Shiokawa, K.; Otsuka, Y.; Watson, C.; Mushini, S.C.; MacDougall, J.W.; Prikryl, P.; Chadwick, R.; Kelly, T.D. GPS total electron content variations associated with poleward moving Sun-aligned arcs. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Jayachandran, P.; Hamza, A.; Hosokawa, K.; Mezaoui, H.; Shiokawa, K. GPS amplitude and phase scintillation associated with polar cap auroral forms. J. Atmos. Solar-Terr. Phys. 2017, 164, 185–191. [Google Scholar] [CrossRef]
- Moen, J.; Oksavik, K.; Alfonsi, L.; Daabakk, Y.; Romano, V.; Spogli, L. Space weather challenges of the polar cap ionosphere. J. Space Weather Space Clim. 2013, 3, A02. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Zhang, B.-C.; Lockwood, M.; Hu, H.-Q.; Moen, J.; Ruohoniemi, J.M.; Thomas, E.G.; Zhang, S.-R.; Yang, H.-G.; Liu, R.-Y.; et al. Direct Observations of the Evolution of Polar Cap Ionization Patches. Science 2013, 339, 1597–1600. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Ma, Y.-Z.; Jayachandran, P.T.; Moen, J.; Lockwood, M.; Zhang, Y.-L.; Foster, J.C.; Zhang, S.-R.; Wang, Y.; Themens, D.R.; et al. Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere. Geophys. Res. Lett. 2017, 44, 8159–8167. [Google Scholar] [CrossRef] [Green Version]
- Buchau, J.; Weber, E.J.; Moore, J.G.; Reinisch, B.W.; Livingston, R.C.; Anderson, D.N.; Carlson, H.C. Ionospheric structures in the polar cap: Their origin and relation to 250-MHz scintillation. Radio Sci. 1985, 20, 325–338. [Google Scholar] [CrossRef]
- Coker, C.; Bust, G.S.; Doe, R.A.; Gaussiran, T.L. High-latitude plasma structure and scintillation. Radio Sci. 2004, 39. [Google Scholar] [CrossRef]
- Mitchell, C.N.; Alfonsi, L.; De Franceschi, G.; Lester, M.; Romano, V.; Wernik, A.W. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Van Der Meeren, C.; Oksavik, K.; Lorentzen, D.; Moen, J.I.; Romano, V. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J. Geophys. Res. Space Phys. 2014, 119, 8624–8636. [Google Scholar] [CrossRef]
- Oksavik, K.; Van Der Meeren, C.; Lorentzen, D.A.; Baddeley, L.J.; Moen, J. Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere. J. Geophys. Res. Space Phys. 2015, 120, 9161–9175. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Jayachandran, P.T.; Lockwood, M.; Zhang, S.-R.; Moen, J.; Xing, Z.; Ma, Y.; Lester, M. A comparison between large-scale irregularities and scintillations in the polar ionosphere. Geophys. Res. Lett. 2016, 43, 4790–4798. [Google Scholar] [CrossRef] [Green Version]
- Guzdar, P.N.; Chaturvedi, P.K.; Gondarenko, N.A.; Basu, S. Three-dimensional nonlinear simulations of the gradient drift instability in the high-latitude ionosphere. Radio Sci. 1998, 33, 1901–1913. [Google Scholar] [CrossRef]
- Gondarenko, N.A. Plasma patch structuring by the nonlinear evolution of the gradient drift instability in the high-latitude ionosphere. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Meziane, K.; Kashcheyev, A.; Patra, S.; Jayachandran, P.T.; Hamza, A.M. Solar Cycle Variations of GPS Amplitude Scintillation for the Polar Region. Space Weather 2020, 18, 2434. [Google Scholar] [CrossRef]
- McCaffrey, A.M.; Jayachandran, P.T. Spectral characteristics of auroral region scintillation using 100 Hz sampling. GPS Solut. 2017, 21, 1883–1894. [Google Scholar] [CrossRef]
- Jayachandran, P.T.; Langley, R.B.; MacDougall, J.W.; Mushini, S.C.; Pokhotelov, D.; Hamza, A.M.; Mann, I.R.; Milling, D.K.; Kale, Z.C.; Chadwick, R.; et al. Canadian High Arctic Ionospheric Network (CHAIN). Radio Sci. 2009, 44. [Google Scholar] [CrossRef]
- Greenwald, R.A.; Sofko, G.J.; Cerisier, J.-C.; Bristow, W.A.; Senior, C.; Szabo, A. Super dual auroral radar network radar imaging of dayside high-latitude convection under northward interplanetary magnetic field: Toward resolving the distorted two-cell versus multicell controversy. J. Geophys. Res. Space Phys. 1995, 100, 19661–19674. [Google Scholar] [CrossRef]
- Ridley, A. Estimations of the uncertainty in timing the relationship between magnetospheric and solar wind processes. J. Atmos. Solar-Terr. Phys. 2000, 62, 757–771. [Google Scholar] [CrossRef]
- Jayachandran, P.T.; MacDougall, J.W. Sunward polar cap convection. J. Geophys. Res. Space Phys. 2001, 106, 29009–29025. [Google Scholar] [CrossRef]
- Jayachandran, P.T.; MacDougall, J.W. Central polar cap convection response to short duration south-ward interplanetary magnetic field. Ann. Geophys. 2000, 18, 887–896. [Google Scholar] [CrossRef]
- Watson, C.; Jayachandran, P.T.; MacDougall, J.W. Characteristics of GPS TEC variations in the polar cap ionosphere. J. Geophys. Res. Space Phys. 2016, 121, 4748–4768. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.; Jayachandran, P.T.; Spanswick, E.; Donovan, E.F.; Danskin, D.W. GPS TEC technique for observation of the evolution of substorm particle precipitation. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Keskinen, M.J.; Mitchell, H.G.; Fedder, J.A.; Satyanarayana, P.; Zalesak, S.T.; Huba, J.D. Nonlinear evolution of the Kelvin-Helmholtz instability in the high-latitude ionosphere. J. Geophys. Res. Space Phys. 1988, 93, 137–152. [Google Scholar] [CrossRef]
- Nishimura, Y.; Lyons, L.R.; Zou, Y.; Oksavik, K.; Moen, J.I.; Clausen, L.B.; Donovan, E.F.; Angelopoulos, V.; Shiokawa, K.; Ruohoniemi, J.M.; et al. Day-night coupling by a localized flow channel visualized by polar cap patch propagation. Geophys. Res. Lett. 2014, 41, 3701–3709. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thayyil, J.P.; McCaffrey, A.M.; Wang, Y.; Themens, D.R.; Watson, C.; Reid, B.; Zhang, Q.; Xing, Z. Global Positioning System (GPS) Scintillation Associated with a Polar Cap Patch. Remote Sens. 2021, 13, 1915. https://doi.org/10.3390/rs13101915
Thayyil JP, McCaffrey AM, Wang Y, Themens DR, Watson C, Reid B, Zhang Q, Xing Z. Global Positioning System (GPS) Scintillation Associated with a Polar Cap Patch. Remote Sensing. 2021; 13(10):1915. https://doi.org/10.3390/rs13101915
Chicago/Turabian StyleThayyil, Jayachandran P., Anthony M. McCaffrey, Yong Wang, David R. Themens, Christopher Watson, Benjamin Reid, Qinghe Zhang, and Zanyang Xing. 2021. "Global Positioning System (GPS) Scintillation Associated with a Polar Cap Patch" Remote Sensing 13, no. 10: 1915. https://doi.org/10.3390/rs13101915
APA StyleThayyil, J. P., McCaffrey, A. M., Wang, Y., Themens, D. R., Watson, C., Reid, B., Zhang, Q., & Xing, Z. (2021). Global Positioning System (GPS) Scintillation Associated with a Polar Cap Patch. Remote Sensing, 13(10), 1915. https://doi.org/10.3390/rs13101915