Phenological Changes of Mongolian Oak Depending on the Micro-Climate Changes Due to Urbanization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Digital Camera and Satellite Image Acquisition
2.3. Digital Camera Image Analysis
2.4. Analysis of Satellite Images
2.5. Sap Flow Measurement
2.6. Data Correction
2.7. Weather Factor Collection and Analysis
3. Results
3.1. The Green-up Date of Mongolian Oak
3.2. Accumulated Growing Degree Days (AGDD)
3.3. Seasonal Trajectory of the Sap Flow
4. Discussion
4.1. Changes in the Green-up Dates Depending on Land Use Intensity
4.2. Diagnosis of Phenological Changes by Analyzing Sap Flow
4.3. Ecosystem Management Strategy to Adapt Climate Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyu, R.; Clarke, K.C.; Zhang, J.; Jia, X.; Feng, J.; Li, J. The impact of urbanization and climate change on ecosystem services: A case study of the city belt along the Yellow River in Ningxia, China. Comput. Environ. Urban Syst. 2019, 77, 101351. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Xu, L.; Zheng, H.; Chen, J. Spatiotemporal dynamics of carbon storage in response to urbanization: A case study in the Su-Xi-Chang region, China. Processes 2019, 7, 836. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.; Song, C.; Li, J. Impacts of urbanization on vegetation phenology over the past three decades in Shanghai, China. Remote Sens. 2017, 9, 970. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Mao, J.; Zhou, Y.; Richardson, A.D.; Lee, X.; Thornton, P.E.; Ricciuto, D.M.; Li, X.; Dai, Y.; Shi, X.; et al. Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proc. Natl. Acad. Sci. USA 2020, 117, 4228–4233. [Google Scholar] [CrossRef]
- Amthor, J.S. Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob. Chang. Biol. 1995, 1, 243–274. [Google Scholar] [CrossRef]
- Houghton, R.A. Land-use change and the carbon cycle. Glob. Chang. Biol. 1995, 1, 275–287. [Google Scholar] [CrossRef]
- Socolow, R.; Hotinski, R.; Greenblatt, J.B.; Pacala, S. Solving the climate problem: Technologies available to curb CO2 emissions. Environ. Sci. Policy Sustain. Dev. 2004, 46, 8–19. [Google Scholar] [CrossRef]
- Kashiwagi, H. Atmospheric carbon dioxide and climate change since the Late Jurassic (150 Ma) derived from a global carbon cycle model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 454, 82–90. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31, L12209. [Google Scholar] [CrossRef]
- Changnon, S.A. Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change. Bull. Am. Meteorol. Soc. 1992, 73, 619–627. [Google Scholar] [CrossRef]
- Tayanc, M.; Toros, H. Urbanization effects on regional climate change in the case of four large cities of Turkey. Clim. Chang. 1997, 35, 501–524. [Google Scholar] [CrossRef]
- Liu, J.; Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 2019, 9, 1–14. [Google Scholar]
- Chang, Y.; Xiao, J.; Li, X.; Frolking, S.; Zhou, D.; Schneider, A.; Weng, Q.; Yu, P.; Wang, X.; Li, X.; et al. Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites. Sci. Total Environ. 2021, 763, 144224. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.H.; An, J.H.; Jung, S.H.; Nam, G.B.; Cho, Y.C.; Kim, N.S.; Lee, C.S. Ecological consideration for several methodologies to diagnose vegetation phenology. Ecol. Res. 2018, 33, 363–377. [Google Scholar] [CrossRef]
- Krehbiel, C.; Henebry, G.M. A comparison of multiple datasets for monitoring thermal time in urban areas over the US Upper Midwest. Remote. Sens. 2016, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Ha, K.J.; Ha, E.H.; YOO, C.S.; Jeon, E.H. Temperature Trends and Extreme Climate since 1909 at Big Four Cities of Korea. J. Korean Meteorol. Soc. 2004, 41, 1–16. [Google Scholar]
- Alexander, L.; Zhang, V.X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.; Haylock, M.; Collins, D.; Vazquez-Aguirre, J.L. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ruby Leung, L.; Zhao, N.; Zhao, C.; Qian, Y.; Hu, K.; Liu, X.; Chen, B. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett. 2017, 44, 6940–6950. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, Y.; Ma, T.; Zhao, M.; Fan, Z.; Yin, X.; Liu, Y.; Yue, T. Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. Sci. Total Environ. 2019, 688, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.H.; Jung, S.H.; Kim, A.R.; Kim, N.S.; Lee, C.S. Monitoring for Changes in Spring Phenology at Both Temporal and Spatial Scales Based on MODIS LST Data in South Korea. Remote Sens. 2020, 12, 3282. [Google Scholar] [CrossRef]
- Oke, T.R. The urban energy balance. Prog. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Zipper, S.C.; Schatz, J.; Singh, A.; Kucharik, C.J.; Townsend, P.A.; Loheide, S.P., II. Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover. Environ. Res. Lett. 2016, 11, 054023. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Mazinyo, S.P.; Nel, W.; Kalumba, A.M. Spatiotemporal monitoring of land surface temperature and estimated radiation using remote sensing: Human health implications for East London, South Africa. Environ. Earth Sci. 2018, 77, 1–10. [Google Scholar] [CrossRef]
- Willie, Y.A.; Pillay, R.; Zhou, L.; Orimoloye, I.R. Monitoring spatial pattern of land surface thermal characteristics and urban growth: A case study of King Williams using remote sensing and GIS. Earth Sci. Inform. 2019, 12, 447–464. [Google Scholar] [CrossRef]
- Jochner, S.; Caffarra, A.; Menzel, A. Can spatial data substitute temporal data in phenological modelling? A survey using birch flowering. Tree Physiol. 2013, 33, 1256–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jochner, S.; Menzel, A. Urban phenological studies–past, present, future. Environ. Pollut. 2015, 203, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Bradley, N.L.; Leopold, A.C.; Ross, J.; Huffaker, W. Phenological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. USA 1999, 96, 9701–9704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñuelas, J.; Filella, I. Responses to a warming world. Science 2001, 294, 793–795. [Google Scholar] [CrossRef]
- Kim, N.S. Characteristics of Spatio-temporal Distribution of Phenology Fluctuation By Using Modis Images. Symp. Korean Geogr. Soc. 2011, 5, 73–77. [Google Scholar]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Ovaskainen, O.; Skorokhodova, S.; Yakovleva, M.; Sukhov, A.; Kutenkov, A.; Kutenkova, N.; Shcherbakov, A.; Meyke, E.; del Mar Delgado, M. Community-level phenological response to climate change. Proc. Natl. Acad. Sci. USA 2013, 110, 13434–13439. [Google Scholar] [CrossRef] [Green Version]
- Julitta, T.; Cremonese, E.; Migliavacca, M.; Colombo, R.; Galvagno, M.; Siniscalco, C.; Rossini, M.; Fava, F.; Cogliatia, S.; Cellab, U.M.; et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 2014, 198, 116–125. [Google Scholar] [CrossRef]
- Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 1996, 382, 146–149. [Google Scholar] [CrossRef]
- Kang, S.; Running, S.W.; Lim, J.H.; Zhao, M.; Park, C.R.; Loehman, R. A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: An application of MODIS leaf area index. Remote Sens. Environ. 2003, 86, 232–242. [Google Scholar] [CrossRef]
- Badeck, F.W.; Bondeau, A.; Böttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol. 2004, 162, 295–309. [Google Scholar] [CrossRef]
- Gray, S.B.; Brady, S.M. Plant developmental responses to climate change. Dev. Biol. 2016, 419, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Reiter, B.E. Changes in North American spring. Int. J. Climatol. 2000, 20, 929–932. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Comas, P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob. Chang. Biol. 2002, 8, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Shen, M.; Zhou, J.; Chen, J. Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agric. For. Meteorol. 2018, 249, 176–186. [Google Scholar] [CrossRef]
- Ide, R.; Oguma, H. Use of digital cameras for phenological observations. Ecol. Inform. 2010, 5, 339–347. [Google Scholar] [CrossRef]
- Xiang, Q.; Zhou, Y.; Liu, J. Monitoring mangrove phenology using camera images. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 2019 International Conference on Resources and Environmental Research, Qingdao, China, 25–27 October 2019; IOP Publishing: Qingdao, China, 2019; Volume 432, p. 012001. [Google Scholar]
- Fitchett, J.M.; Grab, S.W.; Thompson, D.I. Plant phenology and climate change: Progress in methodological approaches and application. Prog. Phys. Geog. 2015, 39, 460–482. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Wang, S.; Tian, L. A promising trend for field information collection: An air-ground multi-sensor monitoring system. Inf. Process. Agric. 2018, 5, 224–233. [Google Scholar] [CrossRef]
- Urban, J.; Bednářová, E.; Plichta, R.; Kučera, J. Linking phenological data to ecophysiology of European beech. Acta Hortic. (ISHS) 2013, 991, 293–299. [Google Scholar] [CrossRef]
- Paloschi, R.A.; Ramos, D.M.; Ventura, D.J.; Souza, R.; Souza, E.; Morellato, L.P.C.; Nóbrega, R.L.B.; Coutinho, Í.A.C.; Verhoef, A.; Körting, T.S.; et al. Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing Phenology and Sap Flow Measurements. Remote Sens. 2021, 13, 75. [Google Scholar] [CrossRef]
- Alberton, B.; da Silva Torres, R.; Sanna Freire Silva, T.; Rocha, H.R.D.; Moura, M.S.B.; Morellato, L.P.C. Leafing patterns and drivers across seasonally dry tropical communities. Remote Sens. 2019, 11, 2267. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Jiménez, K.; Holbrook, N.M.; Gutiérrez-Soto, M.V. Dry-season leaf flushing of Enterolobium cyclocarpum (ear-pod tree): Above–and belowground phenology and water relations. Tree Physiol. 2007, 27, 1561–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavrič, M.; Eler, K.; Ferlan, M.; Vodnik, D.; Gričar, J. Chronological sequence of leaf phenology, xylem and phloem formation and sap flow of Quercus pubescens from abandoned karst grasslands. Front. Plant Sci. 2017, 8, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, H.H.; Joly, J. On the ascent of sap. Philos. Trans. R. Soc. Lond. B 1895, 186, 563–576. [Google Scholar]
- Sparks, T.H.; Huber, K.; Croxton, P.J. Plant development scores from fixed-date photographs: The influence of weather variables and recorder experience. Int. J. Biometeorol. 2006, 50, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 2018, 8, 1–12. [Google Scholar]
- Link, P.; Simonin, K.; Maness, H.; Oshun, J.; Dawson, T.; Fung, I. Species differences in the seasonality of evergreen tree transpiration in a Mediterranean climate: Analysis of multiyear, half-hourly sap flow observations. Water Resour. Res. 2014, 50, 1869–1894. [Google Scholar] [CrossRef]
- Di Francescantonio, D.; Villagra, M.; Goldstein, G.; Campanello, P.I. Leaf phenology and water-use patterns of canopy trees in Northern Argentinean subtropical forests. Tree Physiol. 2018, 38, 1841–1854. [Google Scholar] [CrossRef]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef]
- Kim, N.S.; Lee, C.S. Prediction for climate change: Climate change and prediction for change of vegetation distribution due to it in the Korean peninsula. Ser. Long Term Ecol. Res. 2014, 7, 102–112. [Google Scholar]
- Kim, N.S.; Lee, H.C.; Cha, J.Y. A Study on Changes of Phenology and Characteristics of Spatial Distribution Using MODIS Images. J. Korea Soc. Environ. Restor. Technol. 2013, 16, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Hufkens, K.; Friedl, M.; Sonnentag, O.; Braswell, B.H.; Milliman, T.; Richardson, A.D. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 2012, 117, 307–321. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.; De Beurs, K.; Wynne, R.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ. 2012, 117, 381–393. [Google Scholar] [CrossRef]
- Burgess, S.S.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.; Bleby, T.M. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001, 21, 589–598. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Li, X.; Ault, T.R. Testing Hopkins’ bioclimatic law with PhenoCam data. Appl. Plant Sci. 2019, 7, e01228. [Google Scholar] [CrossRef] [Green Version]
- Kira, T. New Climatic Zonation in Eastern Asia as a Basis of Agricultural Geography; Kyoto Imperial University: Kyoto, Japan, 1945; p. 45. (In Japanese) [Google Scholar]
- Schenker, G.; Lenz, A.; Körner, C.; Hoch, G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 2014, 34, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D.; et al. Land Degradation. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 345–436. [Google Scholar]
- Chung, U.; Choi, J.; Yun, J.I. Urbanization effect on the observed change in mean monthly temperatures between 1951–1980 and 1971–2000 in Korea. Clim. Chang. 2004, 66, 127–136. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y.; Chu, Z.; Zhou, J.; Zhang, A.; Guo, J.; Liu, X. Urbanization effects on observed surface air temperature trends in North China. J. Clim. 2008, 21, 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Lister, D.H.; Li, Q. Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res. Atmos. 2008, 113, D16122. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhu, X.; Shen, Z.; Wu, J.; Xu, S.; Liang, Z.; Wang, J. Investigating the urban-induced microclimate effects on winter wheat spring phenology using Sentinel-2 time series. Agric. For. Meteorol. 2020, 294, 108153. [Google Scholar] [CrossRef]
- Melaas, E.K.; Wang, J.A.; Miller, D.L.; Friedl, M.A. Interactions between urban vegetation and surface urban heat islands: A case study in the Boston metropolitan region. Environ. Res. Lett. 2016, 11, 054020. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; Cho, Y.C.; Lee, A.N. Restoration planning for the Seoul metropolitan area, Korea. In Ecology, Planning, and Management of Urban Forests; Springer: New York, NY, USA, 2008; pp. 393–419. [Google Scholar]
- Lee, C.S.; Jung, S.; Lim, B.S.; Kim, A.R.; Lim, C.H.; Lee, H. Forest Decline Under Progress in the Urban Forest of Seoul, Central Korea. In Forest Degradation Around the World; IntechOpen: London, UK, 2019. [Google Scholar]
- Gezon, Z.J.; Inouye, D.W.; Irwin, R.E. Phenological change in a spring ephemeral: Implications for pollination and plant reproduction. Glob. Chang. Biol. 2016, 22, 1779–1793. [Google Scholar] [CrossRef]
- Primack, R.B.; Higuchi, H.; Miller-Rushing, A.J. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 2009, 142, 1943–1949. [Google Scholar] [CrossRef]
- Neil, K.; Wu, J. Effects of urbanization on plant flowering phenology: A review. Urban Ecosyst. 2006, 9, 243–257. [Google Scholar] [CrossRef]
- Lim, C.H.; Jung, S.H.; Kim, N.S.; Lee, C.S. Deduction of a meteorological phenology indicator from reconstructed MODIS LST imagery. J. For. Res. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazrkar, M.H.; Zamani, N.; Eslamian, S.; Eslamian, A.; Dehghan, Z. Urbanization and Climate Change. In Handbook of Climate Change Adaptation; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Wang, W.; Wu, T.; Li, Y.; Xie, S.; Han, B.; Zheng, H.; Ouyang, Z. Urbanization Impacts on Natural Habitat and Ecosystem Services in the Guangdong-Hong Kong-Macao Megacity. Sustainability 2020, 12, 6675. [Google Scholar] [CrossRef]
- Huong, H.T.L.; Pathirana, A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci. 2013, 17, 379–394. [Google Scholar] [CrossRef] [Green Version]
- D’amato, G.; Pawankar, R.; Vitale, C.; Lanza, M.; Molino, A.; Stanziola, A.; Sanduzzi, A.; Vatrella, A.; D’amato, M. Climate change and air pollution: Effects on respiratory allergy. Allergy Asthma Immunol. Res. 2016, 8, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, H. Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef] [Green Version]
- UNEP. Guidelines for Social Life Cycle Assessment of Products; United Nations Environment Program: Paris, France, 2009. [Google Scholar]
- Gu, L.; Post, W.M.; Baldocchi, D.; Andy Black, T.; Verma, S.B.; Vesala, T.; Wofsy, S.C. Phenology of Vegetation Photosynthesis. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2003; pp. 467–485. [Google Scholar]
- Shen, M.; Tang, Y.; Desai, A.R.; Gough, C.; Chen, J. Can EVI-derived land-surface phenology be used as a surrogate for phenology of canopy photosynthesis? Int. J. Remote Sens. 2014, 35, 1162–1174. [Google Scholar] [CrossRef]
- Střelcová, K.; Priwitzer, T.; Minďáš, J. Fenologické Fázy a Transpirácia Buka Lesného v Horskom Zmiešanom Lese; Fenologická Odezva Proměnlivosti Podnebí: Brno, Czech Republic, 2006. [Google Scholar]
- Hardy, J.T. Climate Change: Causes, Effects, and Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ritchie, H.; Roser, M. Fossil fuels. In Our World in Data; Available online: https://ourworldindata.org/fossil-fuels?utm_content=link5 (accessed on 30 March 2021).
- Primack, R.B. A Primer of Conservation Biology, 4th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2008. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Stone, B. Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int. J. Climatol. 2007, 27, 1801–1807. [Google Scholar] [CrossRef]
- Fujibe, F. Urban warming in Japanese cities and its relation to climate change monitoring. Int. J. Climatol. 2011, 31, 162–173. [Google Scholar] [CrossRef]
- Park, S. Cloud and cloud shadow effects on the MODIS vegetation index composites of the Korean Peninsula. Int. J. Remote Sens. 2013, 34, 1234–1247. [Google Scholar] [CrossRef]
- Barbour, M.G. Terrestrial Plant Ecology; The Benjamin/Cummings: San Francisco, CA, USA, 1999; p. 649. [Google Scholar]
- The World Bank. Biodiversity, Climate Change and Adaptation: Nature-Based Solutions from the World Bank Portfolio; The World Bank: Washington, DC, USA, 2008; pp. 1–112. [Google Scholar]
- Olander, L.P.; Boyd, W.; Lawlor, K.; Madeira, E.M.; Niles, J.O. International Forest Carbon and the Climate Change Challenge: Issues and Options; Nicholas Institute for Environmental Policy Solution: Durham, UK, 2009. [Google Scholar]
- UNEP. The Role of Ecosystems in Developing a Sustainable Green Economy; Ecosystem Management Policy Series, Policy Brief 2–2010; United Nations Environment Program: Nairobi, Kenya, 2010. [Google Scholar]
- Lee, C.S. Climate change adaptation realizing through the ecological restoration. In Climate Change and Ecology: Series of Long Term Ecological Research 7; Lee, C.S., Ed.; NIE: Seocheon, Korea, 2014; pp. 165–180. [Google Scholar]
- Chang, C.R.; Li, M.H.; Chang, S.D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Kleerekoper, L.; Van Esch, M.; Salcedo, T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Doick, K.J.; Hutchings, T. Air Temperature Regulation by Urban Trees and Green Infrastructure; Forestry Commission: Edinburgh, UK, 2013; Volume 12, pp. 1–10.
- Rahn, J.J. Making the Weather Work for You: A Practical Guide for Gardener and Farmer; Garden Way Publishing: Charlotte, VT, USA, 1979. [Google Scholar]
- MEA (Millennium Ecosystem Assessment). Millennium Ecosystem Assessment Synthesis Report. 2005. Available online: http://pdf.wri.org/mea_synthesis.pdf (accessed on 28 February 2018).
- Ryu, Y.; Kim, S.; Lee, D. The influence of wind flows on thermal comfort in the Daechung of a traditional Korean house. Build. Environ. 2009, 44, 18–26. [Google Scholar] [CrossRef]
- Bajracharya, B.; Childs, I.; Hastings, P. Climate change adaptation through land use planning and disaster management: Local government perspectives from Queensland. In Proceedings of the 17th Pacific Rim Real Estate Society Conference, Gold Coast, Australia, 16–19 January 2011; PRRES: Gold Coast, Australia, 2011. [Google Scholar]
- Obiakor, M.O.; Ezeonyejiaku, C.D.; Mogbo, T.C. Effects of vegetated and synthetic (impervious) surfaces on the microclimate of urban area. J. Appl. Sci. Environ. Manag. 2012, 16, 85–94. [Google Scholar]
- Ren, Z.; He, X.; Zheng, H.; Zhang, D.; Yu, X.; Shen, G.; Guo, R. Estimation of the relationship between Urban Park characteristics and Park cool island intensity by remote sensing data and Field measurement. Forests 2013, 4, 868–886. [Google Scholar] [CrossRef] [Green Version]
- Müller, N.; Kuttler, W.; Barlag, A.B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor. Appl. Climatol. 2014, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Collins, N.; Smith, G.; Allen, J.B. A Guide for Incorporating Adaptation to Climate Change into Land-Use Planning, version 1; MCIP CEF Consultants: Halifax, NS, Canada, 2005. [Google Scholar]
- Arnfield, A.J. Two decades of urban climate research, A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Hamin, E.M.; Gurran, N. Urban form and climate change: Balancing adaptation and mitigation in the U.S. and Australia. Habitat Int. 2009, 33, 238–245. [Google Scholar] [CrossRef] [Green Version]
- EU Ad Hoc Expert Working Group on Biodiversity and Climate Change. Towards a Strategy on Climate Change. In Ecosystem Services and Biodiversity; European Commission: Brussels, Belgium, 2009; Available online: http://ec.europa.eu/environment/nature/pdf/discussion_paper_climate_change.pdf (accessed on 28 February 2021).
- European Commission. Science for Environment Policy Thematic Issue: Ecosystem-Based Adaptation; European Commission: Brussels, Belgium, 2013; Available online: http://ec.europa.eu/environment/integration/research/newsalert/pdf/37si_en.Pdf (accessed on 28 February 2021).
Site Name | Latitude (Decimal Degree) | Longitude (Decimal Degree) | Elevation (m) | Tower Type | Data Collection Period (DOY) | ||
---|---|---|---|---|---|---|---|
Digital Camera | MODIS | ||||||
Urban center | Mt. Nam | 37.55 | 126.99 | 215 | Ecological tower | 56~240 | 2016/2/19 ~ 2016/7/18 |
Mt. Mido | 37.49 | 127.00 | 40 | 56~240 | |||
Mt. Umyeon | 37.47 | 127.00 | 185 | 76~240 | |||
Suburb | Mt. Cheonggye | 37.44 | 127.05 | 276 | 72~240 | ||
Mt. Buram | 37.63 | 127.09 | 115 | 63~240 | |||
Rural area | Gwangneung (Mt. Sori) | 37.75 | 127.15 | 345 | Fire surveillance tower | 96~240 | |
Natural area | Mt. Jeombong | 38.04 | 128.47 | 830 | Ecological tower | 91~240 |
Site Name | Urbanized Area (km2) | Urbanization Rate (%) | |
---|---|---|---|
Urban center | Mt. Nam | 59.71 | 76.07 |
Mt. Mido | 55.22 | 70.35 | |
Mt. Umyeon | 41.16 | 52.44 | |
Suburb | Mt. Cheonggye | 28.10 | 35.80 |
Mt. Buram | 38.94 | 49.60 | |
Rural area | Gwangneung (Mt. Sori) | 5.01 | 6.38 |
Intervalometer | Daily Capture Times | 09:00, 12:30, 16:00 |
---|---|---|
Interval between Captures | 3 1/2 h | |
Camera | Model | Acorn Ltl-6210M |
Sensor | 5 megapixel color CMOS | |
Pixel size | 2560 × 1920 | |
Channels | RGB (red, green, blue) | |
Lens | F = 3.1; FoV = 52; Auto IR-Cut | |
Memory card | 32 GB SD | |
File type | High-quality JPEG (2MP) | |
Power | 12 × AA; Solar panel | |
Flash | Disabled |
Site | ExG | EVI | |||||
---|---|---|---|---|---|---|---|
Obs (DoY) | Exp (DoY) | Diff (Days) | Obs (DoY) | Exp (DoY) | Diff (Days) | ||
Urban center | Mt. Nam | 94 | 110 | −16 | 94 | 110 | −16 |
Mt. Mido | 95 | 113 | −18 | 96 | 114 | −18 | |
Mt. Umyeon | 95 | 110 | −15 | 97 | 112 | −15 | |
Suburb | Mt. Cheonggye | 97 | 111 | −14 | 96 | 110 | −14 |
Mt. Buram | 95 | 110 | −15 | 96 | 111 | −15 | |
Rural area | Gwangneung (Mt. Sori) | 103 | 114 | −11 | 104 | 115 | −11 |
Natural area | Mt. Jeombong | 118 | 118 | 0 | 114 | 114 | 0 |
Site Name | Green-Up Dates (DoY) | AGDD (°C) | ||
---|---|---|---|---|
ExG | EVI | |||
Urban center | Mt. Nam | 94 | 160.3 | 160.3 |
Mt. Mido | 95 | 158.2 | 166.9 | |
Mt. Umyeon | 95 | 156.3 | 162.6 | |
Suburb | Mt. Cheonggye | 97 | 162.2 | 153.2 |
Mt. Buram | 96 | 162.3 | 168.3 | |
Rural area | Gwangneung (Mt. Sori) | 103 | 156.6 | 163.3 |
Natural area | Mt. Jeombong | 114 | 160.5 | 154.4 |
Average | 159.5 | 161.3 |
Site | ExG (DoY) | EVI (DoY) | SFM (DoY) | Difference (Days) | |
---|---|---|---|---|---|
ExG-SFM | EVI-SFM | ||||
Mt. Nam | 94 | 94 | 94 | 0 | 0 |
Mt. Mido | 95 | 96 | - | - | - |
Mt. Umyeon | 95 | 97 | 96 | −1 | 1 |
Mt. Cheonggye | 97 | 96 | 97 | 0 | 1 |
Mt. Buram | 95 | 96 | - | - | - |
Gwangneung (Mt. Sori) | 103 | 104 | 104 | 1 | 0 |
Mt. Jeombong | 118 | 114 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.R.; Lim, C.H.; Lim, B.S.; Seol, J.; Lee, C.S. Phenological Changes of Mongolian Oak Depending on the Micro-Climate Changes Due to Urbanization. Remote Sens. 2021, 13, 1890. https://doi.org/10.3390/rs13101890
Kim AR, Lim CH, Lim BS, Seol J, Lee CS. Phenological Changes of Mongolian Oak Depending on the Micro-Climate Changes Due to Urbanization. Remote Sensing. 2021; 13(10):1890. https://doi.org/10.3390/rs13101890
Chicago/Turabian StyleKim, A Reum, Chi Hong Lim, Bong Soon Lim, Jaewon Seol, and Chang Seok Lee. 2021. "Phenological Changes of Mongolian Oak Depending on the Micro-Climate Changes Due to Urbanization" Remote Sensing 13, no. 10: 1890. https://doi.org/10.3390/rs13101890
APA StyleKim, A. R., Lim, C. H., Lim, B. S., Seol, J., & Lee, C. S. (2021). Phenological Changes of Mongolian Oak Depending on the Micro-Climate Changes Due to Urbanization. Remote Sensing, 13(10), 1890. https://doi.org/10.3390/rs13101890