Inferring Grassland Drought Stress with Unsupervised Learning from Airborne Hyperspectral VNIR Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Drought Status
2.2. Airborne Data
2.3. Geophysical Data
2.4. Unsupervised Classification with Simplex Volume Maximisation
2.5. Evaluation with Spectral Indices and Geophysical Measurements
Index Name | Abbr. | Equation | Ref. |
---|---|---|---|
Opt. chlorophyll red edge index | ChlRE opt | [24] | |
Opt. carotenoid red edge index | CarRE opt | [24] | |
Red edge normalised difference vegetation index | RENDVI | [73] | |
Photochemical reflectance index 512 | PRI512 | [75] | |
Carter index 2 | CTR2 | [81] | |
Modified chlorophyll absorption ratio index 2 | MCARI2 | [82] | |
Modified soil-adjusted vegetation index 2 | MSAVI2 | [84] | |
Water band index | WBI | [87] | |
First derivative @ 950.6 nm | - | [90] |
2.6. Statistical Inference
3. Results
3.1. Drought Status
3.2. Archetypes and Stress Maps
3.3. Correlation Analysis
3.4. Boosted Beta Regression
4. Discussion
4.1. Archetype Classification
4.2. Importance of Variables
4.3. Potential of SiVM for Vegetation Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cab | Chlorophyll content |
Cxc | Carotenoid content |
CarRE opt | Optimised carotenoid red edge index |
ChlRE opt | Optimised chlorophyll red edge index |
CRS | Coordinate reference system |
CTR2 | Carter index 2 |
DE-GsB | TERENO/ICOS site “Am Grossen Bruch” |
DEM | Digital elevation model |
DESIS | DLR Earth Sensing Imaging System Spectrometers |
ECa | Apparent electrical conductivity |
EMI | Electromagnetic induction |
EnMAP | Environmental Mapping and Analysis Program |
FM | Full model |
GAM | Generalised additive model |
GAMLSS | Generalised additive models for location, scale and shape |
GR | Gamma ray |
ICOS | Integrated Carbon Observation System Research Infrastructure |
LAI | Leaf area index |
LUE | Light use efficiency |
MCARI2 | Modified chlorophyll absorption ratio index 2 |
MSAVI2 | Modified soil-adjusted vegetation index 2 |
NDVI | Normalised difference vegetation index |
NIR | Near-infrared |
PRI | Photochemical reflectance index |
PRISMA | PRecursore IperSpettrale della Missione Applicativa |
RENDVI | Red edge normalised difference vegetation index |
RWC | Relative water content |
SiVM | Simplex volume maximisation |
SPEI | Standardised precipitation-evapotranspiration index |
SWC | Soil water content |
SWIR | Short-wavelength infrared |
TDR | Time-domain reflectometer |
TERENO | TERrestrial ENvironmental Observatories |
TIR | Thermal infrared |
UAV | Unmanned aerial vehicle |
VIF | Variance inflation factor |
VNIR | Visible and near-infrared |
WBI | Water band index |
References
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Herring, S.C.; Christidis, N.; Hoell, A.; Hoerling, M.P.; Stott, P.A. Explaining Extreme Events of 2018 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2020, 101, S1–S140. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Tallaksen, L.; Kingston, D.; Stagge, J.; Laaha, G.; Van Lanen, H.; Scholz, P.; Chelcea, S.; Haslinger, K. The European 2015 Drought from a Climatological Perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef] [Green Version]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased Future Occurrences of the Exceptional 2018–2019 Central European Drought under Global Warming. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Zscheischler, J.; Mahecha, M.D.; Von Buttlar, J.; Harmeling, S.; Jung, M.; Rammig, A.; Randerson, J.T.; Schölkopf, B.; Seneviratne, S.I.; Tomelleri, E. A Few Extreme Events Dominate Global Interannual Variability in Gross Primary Production. Environ. Res. Lett. 2014, 9, 035001. [Google Scholar] [CrossRef] [Green Version]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral Image Analysis Techniques for the Detection and Classification of the Early Onset of Plant Disease and Stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef] [Green Version]
- Feld, C.K.; Sousa, J.P.; Da Silva, P.M.; Dawson, T.P. Indicators for Biodiversity and Ecosystem Services: Towards an Improved Framework for Ecosystems Assessment. Biodivers. Conserv. 2010, 19, 2895–2919. [Google Scholar] [CrossRef]
- Lausch, A.; Bastian, O.; Klotz, S.; Leitão, P.J.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. Understanding and Assessing Vegetation Health by in Situ Species and Remote-Sensing Approaches. Methods Ecol. Evol. 2018, 9, 1799–1809. [Google Scholar] [CrossRef]
- Schrodt, F.; Bailey, J.J.; Kissling, W.D.; Rijsdijk, K.F.; Seijmonsbergen, A.C.; van Ree, D.; Hjort, J.; Lawley, R.S.; Williams, C.N.; Anderson, M.G.; et al. Opinion: To Advance Sustainable Stewardship, We Must Document Not Only Biodiversity but Geodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 16155–16158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the Free and Open Landsat Data Policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Vereecken, H.; Weihermüller, L.; Jonard, F.; Montzka, C. Characterization of Crop Canopies and Water Stress Related Phenomena Using Microwave Remote Sensing Methods: A Review. Vadose Zone J. 2012, 11, vzj2011.0138ra. [Google Scholar] [CrossRef]
- Asner, G.P.; Brodrick, P.G.; Anderson, C.B.; Vaughn, N.; Knapp, D.E.; Martin, R.E. Progressive Forest Canopy Water Loss during the 2012–2015 California Drought. Proc. Natl. Acad. Sci. USA 2016, 113, E249–E255. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.L. Multi-Angular Optical Remote Sensing for Assessing Vegetation Structure and Carbon Absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef]
- Vilfan, N.; Van der Tol, C.; Muller, O.; Rascher, U.; Verhoef, W. Fluspect-B: A Model for Leaf Fluorescence, Reflectance and Transmittance Spectra. Remote Sens. Environ. 2016, 186, 596–615. [Google Scholar] [CrossRef]
- Schimel, D.; Pavlick, R.; Fisher, J.B.; Asner, G.P.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P. Observing Terrestrial Ecosystems and the Carbon Cycle from Space. Glob. Chang. Biol. 2015, 21, 1762–1776. [Google Scholar] [CrossRef]
- Martin, R.E.; Chadwick, K.D.; Brodrick, P.G.; Carranza-Jimenez, L.; Vaughn, N.R.; Asner, G.P. An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests. Remote Sens. 2018, 10, 199. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K.A. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Govender, M.; Govender, P.J.; Weiersbye, I.M.; Witkowski, E.T.F.; Ahmed, F. Review of Commonly Used Remote Sensing and Ground-Based Technologies to Measure Plant Water Stress. Water SA 2009, 35, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Barton, C. Advances in Remote Sensing of Plant Stress. Plant Soil 2012, 354, 41–44. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Hornero, A.; Mottus, M.; Penuelas, J.; González-Dugo, V.; Jiménez, J.C.; Suárez, L.; Alonso, L.; Zarco-Tejada, P.J. Early Diagnosis of Vegetation Health from High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned from Empirical Relationships and Radiative Transfer Modelling. Curr. For. Rep. 2019, 5, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Féret, J.B.; François, C.; Gitelson, A.; Asner, G.P.; Barry, K.M.; Panigada, C.; Richardson, A.D.; Jacquemoud, S. Optimizing Spectral Indices and Chemometric Analysis of Leaf Chemical Properties Using Radiative Transfer Modeling. Remote Sens. Environ. 2011, 115, 2742–2750. [Google Scholar] [CrossRef] [Green Version]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The Photochemical Reflectance Index (PRI) and the Remote Sensing of Leaf, Canopy and Ecosystem Radiation Use Efficiencies: A Review and Meta-Analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Römer, C.; Wahabzada, M.; Ballvora, A.; Pinto, F.; Rossini, M.; Panigada, C.; Behmann, J.; Léon, J.; Thurau, C.; Bauckhage, C.; et al. Early Drought Stress Detection in Cereals: Simplex Volume Maximisation for Hyperspectral Image Analysis. Funct. Plant Biol. 2012, 39, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Random Forests Unsupervised Classification: The Detection and Mapping ofSolanum mauritianumInfestations in Plantation Forestry Using Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3107–3122. [Google Scholar] [CrossRef]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of Early Plant Stress Responses in Hyperspectral Images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Ceamanos, X.; Valero, S. Processing Hyperspectral Images. In Optical Remote Sensing of Land Surface, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 163–200. [Google Scholar]
- Lee, D.D.; Seung, H.S. Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef]
- Pauca, V.P.; Shahnaz, F.; Berry, M.W.; Plemmons, R.J. Text Mining Using Non-Negative Matrix Factorizations. In Proceedings of the 2004 SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA, 22–24 April 2004; pp. 452–456. [Google Scholar] [CrossRef]
- Li, Y.; Ngom, A. The Non-Negative Matrix Factorization Toolbox for Biological Data Mining. Source Code Biol. Med. 2013, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Hashimoto, R.; Wible, C.G.; Yoo, S.S. Investigation of Spectrally Coherent Resting-State Networks Using Non-Negative Matrix Factorization for Functional MRI Data. Int. J. Imaging Syst. Technol. 2011, 21, 211–222. [Google Scholar] [CrossRef]
- Ball, N.M.; Brunner, R.J. Data Mining and Machine Learning in Astronomy. Int. J. Mod. Phys. D 2010, 19, 1049–1106. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Qian, Y. Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2008, 47, 161–173. [Google Scholar] [CrossRef]
- Gillis, N.; Plemmons, R.J. Dimensionality Reduction, Classification, and Spectral Mixture Analysis Using Non-Negative Underapproximation. Opt. Eng. 2011, 50, 027001. [Google Scholar] [CrossRef] [Green Version]
- Karoui, M.S.; Deville, Y.; Hosseini, S.; Ouamri, A.; Ducrot, D. Contribution of Non-Negative Matrix Factorization to the Classification of Remote Sensing Images. In Proceedings of the Image and Signal Processing for Remote Sensing XIV. International Society for Optics and Photonics, Cardiff, Wales, UK, 15–18 September 2008; Volume 7109, p. 71090X. [Google Scholar] [CrossRef]
- Huang, B.; Song, H.; Cui, H.; Peng, J.; Xu, Z. Spatial and Spectral Image Fusion Using Sparse Matrix Factorization. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1693–1704. [Google Scholar] [CrossRef]
- Danaher, S.; O’mongain, E. Singular Value Decomposition in Multispectral Radiometry. Int. J. Remote Sens. 1992, 13, 1771–1777. [Google Scholar] [CrossRef]
- Thurau, C.; Kersting, K.; Bauckhage, C. Yes We Can: Simplex Volume Maximization for Descriptive Web-Scale Matrix Factorization. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM’10, Toronto, ON, Canada, 25–29 October 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 1785–1788. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wollschläger, U.; Attinger, S.; Borchardt, D.; Brauns, M.; Cuntz, M.; Dietrich, P.; Fleckenstein, J.H.; Friese, K.; Friesen, J.; Harpke, A. The Bode Hydrological Observatory: A Platform for Integrated, Interdisciplinary Hydro-Ecological Research within the TERENO Harz/Central German Lowland Observatory. Environ. Earth Sci. 2017, 76, 29. [Google Scholar] [CrossRef]
- Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach-Bahl, K.; et al. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone J. 2011, 10, 955–973. [Google Scholar] [CrossRef] [Green Version]
- Rebmann, C.; Aubinet, M.; Schmid, H.; Arriga, N.; Aurela, M.; Burba, G.; Clement, R.; De Ligne, A.; Fratini, G.; Gielen, B. ICOS Eddy Covariance Flux-Station Site Setup: A Review. Int. Agrophys. 2018, 32, 471–494. [Google Scholar] [CrossRef]
- Bernhofer, C.; Goldberg, V.; Franke, J.; Surke, M.; Adam, J. Regionale Klimadiagnose für Sachsen-Anhalt, Abschlussbericht zum Forschungsvorhaben des Landesamtes für Umweltschutz Sachsen-Anhalt; Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt; Technische Universität Dresden: Dresden, Germany, 2008; Volume 5. [Google Scholar]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Vergni, L.; Todisco, F.; Mannocchi, F. Evaluating the Uncertainty and Reliability of Standardized Indices. Hydrol. Res. 2017, 48, 701–713. [Google Scholar] [CrossRef]
- Zink, M.; Kumar, R.; Cuntz, M.; Samaniego, L. A High-Resolution Dataset of Water Fluxes and States for Germany Accounting for Parametric Uncertainty. Hydrol. Earth Syst. Sci. 2017, 21, 1769–1790. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Musuuza, J.L.; Loon, A.F.V.; Teuling, A.J.; Barthel, R.; Ten Broek, J.; Mai, J.; Samaniego, L.; Attinger, S. Multiscale Evaluation of the Standardized Precipitation Index as a Groundwater Drought Indicator. Hydrol. Earth Syst. Sci. 2016, 20, 1117–1131. [Google Scholar] [CrossRef] [Green Version]
- Schläpfer, D.; Richter, R. Geo-Atmospheric Processing of Airborne Imaging Spectrometry Data. Part 1: Parametric Orthorectification. Int. J. Remote Sens. 2002, 23, 2609–2630. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. Geo-Atmospheric Processing of Airborne Imaging Spectrometry Data. Part 2: Atmospheric/Topographic Correction. Int. J. Remote Sens. 2002, 23, 2631–2649. [Google Scholar] [CrossRef]
- DWD Climate Data Center. Historical Hourly Weather Station Measurements of Visibility in Germany; Version v002; Deutscher Wetterdienst: Offenbach, Germany, 2019. [Google Scholar]
- Cai, S.; Du, Q.; Moorhead, R.J. Hyperspectral Imagery Visualization Using Double Layers. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3028–3036. [Google Scholar] [CrossRef]
- Cook, P.G.; Hughes, M.W.; Walker, G.R.; Allison, G.B. The Calibration of Frequency-Domain Electromagnetic Induction Meters and Their Possible Use in Recharge Studies. J. Hydrol. 1989, 107, 251–265. [Google Scholar] [CrossRef]
- Lausch, A.; Zacharias, S.; Dierke, C.; Pause, M.; Kühn, I.; Doktor, D.; Dietrich, P.; Werban, U. Analysis of Vegetation and Soil Patterns Using Hyperspectral Remote Sensing, EMI, and Gamma-Ray Measurements. Vadose Zone J. 2013, 12, 1–15. [Google Scholar] [CrossRef]
- Brogi, C.; Huisman, J.A.; Pätzold, S.; von Hebel, C.; Weihermüller, L.; Kaufmann, M.S.; van der Kruk, J.; Vereecken, H. Large-Scale Soil Mapping Using Multi-Configuration EMI and Supervised Image Classification. Geoderma 2019, 335, 133–148. [Google Scholar] [CrossRef]
- Martini, E.; Werban, U.; Zacharias, S.; Pohle, M.; Dietrich, P.; Wollschläger, U. Repeated Electromagnetic Induction Measurements for Mapping Soil Moisture at the Field Scale: Validation with Data from a Wireless Soil Moisture Monitoring Network. Hydrol. Earth Syst. Sci. 2017, 21, 495. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.; Schüler, L.; Zech, A.; Attinger, S.; Heße, F. GeoStat-Framework/GSTools: V1.2.1. Zenodo 2020. [Google Scholar] [CrossRef]
- Ding, C.H.; Li, T.; Jordan, M.I. Convex and Semi-Nonnegative Matrix Factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 32, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, A.; Breiman, L. Archetypal Analysis. Technometrics 1994, 36, 338–347. [Google Scholar] [CrossRef]
- Kersting, K.; Xu, Z.; Wahabzada, M.; Bauckhage, C.; Thurau, C.; Roemer, C.; Ballvora, A.; Rascher, U.; Leon, J.; Pluemer, L. Pre-Symptomatic Prediction of Plant Drought Stress Using Dirichlet-Aggregation Regression on Hyperspectral Images. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI-12), Toronto, ON, Canada, 22–26 July 2012; AAAI Press: Toronto, ON, Canada, 2012; Volume 26, pp. 302–308. [Google Scholar] [CrossRef]
- Kersting, K.; Wahabzada, M.; Römer, C.; Thurau, C.; Ballvora, A.; Rascher, U.; Léon, J.; Bauckhage, C.; Plümer, L. Simplex Distributions for Embedding Data Matrices over Time. In Proceedings of the 2012 SIAM International Conference on Data Mining, Anaheim, CA, USA, 26–28 April 2012; pp. 295–306. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Glenn, D.M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral Image Analysis for Plant Stress Detection. In Proceedings of the 2010 ASABE Annual International Meeting, Pittsburgh, PA, USA, 20–23 June 2010; American Society of Agricultural and Biological Engineers: Pittsburgh, PA, USA, 2010; p. 1. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Al-Suhaibani, N.; Hassan, W.; Tahir, M.; Schmidhalter, U. Hyperspectral Reflectance Sensing to Assess the Growth and Photosynthetic Properties of Wheat Cultivars Exposed to Different Irrigation Rates in an Irrigated Arid Region. PLoS ONE 2017, 12, e0183262. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Bayat, B.; Van der Tol, C.; Verhoef, W. Remote Sensing of Grass Response to Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model Inversion. Remote Sens. 2016, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Aldakheel, Y.Y.; Danson, F.M. Spectral Reflectance of Dehydrating Leaves: Measurements and Modelling. Int. J. Remote Sens. 1997, 18, 3683–3690. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red Edge Spectral Measurements from Sugar Maple Leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Minka, T. Estimating a Dirichlet Distribution; Technical Report; MIT: Cambridge, MA, USA, 2000. [Google Scholar]
- Frigyik, B.A.; Kapila, A.; Gupta, M.R. Introduction to the Dirichlet Distribution and Related Processes; Technical Report; University of Washington: Washington, DC, USA, 2010. [Google Scholar]
- Thurau, C. Python Matrix Factorization Module. 2014. Available online: https://github.com/cthurau/pymf (accessed on 11 May 2021).
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing, Part I: A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gamon, J.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Suárez, L.; Morales, F.; Zarco-Tejada, P.J. Assessing Structural Effects on PRI for Stress Detection in Conifer Forests. Remote Sens. Environ. 2011, 115, 2360–2375. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-Based Water Stress Index Combining Structural and Chlorophyll Effects: Assessment Using Diurnal Narrow-Band Airborne Imagery and the CWSI Thermal Index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Asner, G.P.; Green, R.O. Using Imaging Spectroscopy to Study Ecosystem Processes and Properties. BioScience 2004, 54, 523–534. [Google Scholar] [CrossRef]
- Filella, I.; Porcar-Castell, A.; Munné-Bosch, S.; Bäck, J.; Garbulsky, M.F.; Peñuelas, J. PRI Assessment of Long-Term Changes in Carotenoids/Chlorophyll Ratio and Short-Term Changes in de-Epoxidation State of the Xanthophyll Cycle. Int. J. Remote Sens. 2009, 30, 4443–4455. [Google Scholar] [CrossRef]
- Garrity, S.R.; Eitel, J.U.; Vierling, L.A. Disentangling the Relationships between Plant Pigments and the Photochemical Reflectance Index Reveals a New Approach for Remote Estimation of Carotenoid Content. Remote Sens. Environ. 2011, 115, 628–635. [Google Scholar] [CrossRef]
- Stylinski, C.; Gamon, J.; Oechel, W. Seasonal Patterns of Reflectance Indices, Carotenoid Pigments and Photosynthesis of Evergreen Chaparral Species. Oecologia 2002, 131, 366–374. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of Leaf Reflectances in Narrow Wavebands as Indicators of Plant Stress. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Li, Z.; Guo, X. A Suitable Vegetation Index for Quantifying Temporal Variation of Leaf Area Index (LAI) in Semiarid Mixed Grassland. Can. J. Remote Sens. 2010, 36, 709–721. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Huang, J.F.; Wu, X.H.; Dong, Y.P. Comparison of Vegetation Indices and Red-Edge Parameters for Estimating Grassland Cover from Canopy Reflectance Data. J. Integr. Plant Biol. 2007, 49, 299–306. [Google Scholar] [CrossRef]
- Wu, Z.; Velasco, M.; McVay, J.; Middleton, B.; Vogel, J.; Dye, D. MODIS Derived Vegetation Index for Drought Detection on the San Carlos Apache Reservation. Int. J. Adv. Remote Sens. GIS 2016, 5, 1524–1538. [Google Scholar] [CrossRef] [Green Version]
- Penuelas, J.; Filella, I.; Serrano, L.; Save, R. Cell Wall Elasticity and Water Index (R970 Nm/R900 Nm) in Wheat under Different Nitrogen Availabilities. Int. J. Remote Sens. 1996, 17, 373–382. [Google Scholar] [CrossRef]
- Peñuelas, J.; Inoue, Y. Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 1999, 36, 355–360. [Google Scholar] [CrossRef]
- Rollin, E.M.; Milton, E.J. Processing of High Spectral Resolution Reflectance Data for the Retrieval of Canopy Water Content Information. Remote Sens. Environ. 1998, 65, 86–92. [Google Scholar] [CrossRef]
- Clevers, J.G.; Kooistra, L.; Schaepman, M.E. Using Spectral Information from the NIR Water Absorption Features for the Retrieval of Canopy Water Content. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 388–397. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. 2017. Available online: https://CRAN.R-project.org/package=corrplot (accessed on 11 May 2021).
- Ferrari, S.; Cribari-Neto, F. Beta Regression for Modelling Rates and Proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Cribari-Neto, F.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Imdadullah, M.; Aslam, M.; Altaf, S. Mctest: An R Package for Detection of Collinearity among Regressors. R. J. 2016, 8, 495–505. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitao, P.J. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Mayr, A.; Fenske, N.; Hofner, B.; Kneib, T.; Schmid, M. Generalized Additive Models for Location, Scale and Shape for High Dimensional Data—a Flexible Approach Based on Boosting. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2012, 61, 403–427. [Google Scholar] [CrossRef] [Green Version]
- Stasinopoulos, M.; Rigby, B. Generalized Additive Models for Location Scale and Shape. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2005, 54, 507–554. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Wickler, F.; Maloney, K.O.; Mitchell, R.; Fenske, N.; Mayr, A. Boosted Beta Regression. PLoS ONE 2013, 8, e61623. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R. Generalized Additive Models; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Bühlmann, P.; Yu, B. Boosting with the L 2 Loss: Regression and Classification. J. Am. Stat. Assoc. 2003, 98, 324–339. [Google Scholar] [CrossRef]
- Mayr, A.; Hofner, B.; Schmid, M. The Importance of Knowing When to Stop. Methods Inf. Med. 2012, 51, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Bühlmann, P.; Gertheiss, J.; Hieke, S.; Kneib, T.; Ma, S.; Schumacher, M.; Tutz, G.; Wang, C.Y.; Wang, Z.; Ziegler, A. Discussion of “the Evolution of Boosting Algorithms” and “Extending Statistical Boosting”. Methods Inf. Med. 2014, 53, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Hofner, B.; Mayr, A.; Schmid, M. gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework. arXiv 2014, arXiv:1407.1774. [Google Scholar] [CrossRef] [Green Version]
- Knipling, E.B. Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Magnusson, M.; Sigurdsson, J.; Armannsson, S.; Ulfarsson, M.; Deborah, H.; Sveinsson, J. Creating RGB Images from Hyperspectral Images Using a Color Matching Function. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2045–2048. [Google Scholar] [CrossRef]
- Caturegli, L.; Matteoli, S.; Gaetani, M.; Grossi, N.; Magni, S.; Minelli, A.; Corsini, G.; Remorini, D.; Volterrani, M. Effects of Water Stress on Spectral Reflectance of Bermudagrass. Sci. Rep. 2020, 10, 15055. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E.; Haygarth, P.M. The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. Adv. Agron. 2007, 94, 237–280. [Google Scholar] [CrossRef]
- Nippert, J.B.; Holdo, R.M. Challenging the Maximum Rooting Depth Paradigm in Grasslands and Savannas. Funct. Ecol. 2015, 29, 739–745. [Google Scholar] [CrossRef]
- Hallik, L.; Kazantsev, T.; Kuusk, A.; Galmés, J.; Tomás, M.; Niinemets, Ü. Generality of Relationships between Leaf Pigment Contents and Spectral Vegetation Indices in Mallorca (Spain). Reg. Environ. Chang. 2017, 17, 2097–2109. [Google Scholar] [CrossRef]
- Sudrajat, D.J.; Siregar, I.Z.; Khumaida, N.; Siregar, U.J.; Mansur, I. Adaptability of White Jabon (Anthocephalus Cadamba MIQ.) Seedling from 12 Populations to Drought and Waterlogging. AGRIVITA J. Agric. Sci. 2015, 37, 130–143. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Knapp, A.K.; Carroll, C.J.W.; Denton, E.M.; La Pierre, K.J.; Collins, S.L.; Smith, M.D. Differential Sensitivity to Regional-Scale Drought in Six Central US Grasslands. Oecologia 2015, 177, 949–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Li, F.; Wang, R.; Fan, Y.; Raza, M.A.; Liu, Q.; Wang, Z.; Cheng, Y.; Wu, X.; Yang, F.; et al. Estimation of Nitrogen and Carbon Content from Soybean Leaf Reflectance Spectra Using Wavelet Analysis under Shade Stress. Comput. Electron. Agric. 2019, 156, 482–489. [Google Scholar] [CrossRef]
- Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J. Sci. Stat. Comput. 1984, 5, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Tomaschek, F.; Hendrix, P.; Baayen, R.H. Strategies for Addressing Collinearity in Multivariate Linguistic Data. J. Phon. 2018, 71, 249–267. [Google Scholar] [CrossRef]
- Tuv, E. Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination. J. Mach. Learn. Res. 2009, 10, 1341–1366. [Google Scholar]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Uarrota, V.G.; Stefen, D.L.V.; Leolato, L.S.; Gindri, D.M.; Nerling, D. Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms during Stress. In Antioxidants and Antioxidant Enzymes in Higher Plants; Springer: Cham, Switzerland, 2018; pp. 207–232. [Google Scholar]
- Zhang, N.; Hong, Y.; Qin, Q.; Liu, L. VSDI: A Visible and Shortwave Infrared Drought Index for Monitoring Soil and Vegetation Moisture Based on Optical Remote Sensing. Int. J. Remote Sens. 2013, 34, 4585–4609. [Google Scholar] [CrossRef]
- Raza, S.e.A.; Smith, H.K.; Clarkson, G.J.J.; Taylor, G.; Thompson, A.J.; Clarkson, J.; Rajpoot, N.M. Automatic Detection of Regions in Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible and Thermal Imagery. PLoS ONE 2014, 9, e97612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lausch, A.; Borg, E.; Bumberger, J.; Dietrich, P.; Heurich, M.; Huth, A.; Jung, A.; Klenke, R.; Knapp, S.; Mollenhauer, H. Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sens. 2018, 10, 1120. [Google Scholar] [CrossRef] [Green Version]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [Green Version]
- Kuska, M.; Wahabzada, M.; Leucker, M.; Dehne, H.W.; Kersting, K.; Oerke, E.C.; Steiner, U.; Mahlein, A.K. Hyperspectral Phenotyping on the Microscopic Scale: Towards Automated Characterization of Plant-Pathogen Interactions. Plant Methods 2015, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Alonso, K.; Bachmann, M.; Burch, K.; Carmona, E.; Cerra, D.; De los Reyes, R.; Dietrich, D.; Heiden, U.; Hölderlin, A.; Ickes, J. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 4471. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. PRISMA: The Italian Hyperspectral Mission. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 175–178. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef] [Green Version]
- Pugh, T.A.; Rademacher, T.; Shafer, S.L.; Steinkamp, J.; Barichivich, J.; Beckage, B.; Haverd, V.; Harper, A.; Heinke, J.; Nishina, K. Understanding the Uncertainty in Global Forest Carbon Turnover. Biogeosciences 2020, 17, 3961–3989. [Google Scholar] [CrossRef]
- Fisher, R.; McDowell, N.; Purves, D.; Moorcroft, P.; Sitch, S.; Cox, P.; Huntingford, C.; Meir, P.; Woodward, F.I. Assessing Uncertainties in a Second-Generation Dynamic Vegetation Model Caused by Ecological Scale Limitations. New Phytol. 2010, 187, 666–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of Photosynthetic Radiation-Use Efficiency with Spectral Reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Spectranomics: Emerging Science and Conservation Opportunities at the Interface of Biodiversity and Remote Sensing. Glob. Ecol. Conserv. 2016, 8, 212–219. [Google Scholar] [CrossRef] [Green Version]
Recording Date | Ground Resolution | Field of View | Swath | Spectral Range | Spectral Resolution | Sensor | Platform |
---|---|---|---|---|---|---|---|
m | m | nm | nm | ||||
7 May 2018 | 0.5 | 16 | 508 | 409–989 | 3.2 | HySpex VNIR-1800 | Cessna 207 |
23 April 2019 | 0.4 | 16 | 508 | 409–989 | 3.2 | HySpex VNIR-1800 | Cessna 207 |
Recording Date | Type of Measurement | Derived Variable |
---|---|---|
6 Mar. 2014 | Electromagnetic induction with EM31 | ECa (mS/m) |
6 Mar. 2014 | Electromagnetic induction with EM38 | ECa (mS/m) |
6 Mar. 2014 | Gamma-ray spectrometry | Thorium232 (ppm) |
6 Mar. 2014 | Gamma-ray spectrometry | Dose rate (nGy/h) |
18 Feb. 2015 | Photogrammetry | DEM (m.a.s.l.) |
Name | VIF | FM | M18 | M19 | FM | M18 | M19 |
---|---|---|---|---|---|---|---|
ChlREopt | 88.4 | −0.143 | 0.163 | −0.215 | −0.071 | 0 | −0.390 |
CarREopt | 19.1 | 1.018 | 0.721 | 0.435 | −1.005 | −1.587 | 0 |
RENDVI | 214.3 | 0 | 0.052 | 0 | 0 | 0 | 0 |
PRI512 | 6.8 | 0.322 | 0.011 | 0.079 | 0.009 | 0.495 | 0 |
CTR2 | 139.0 | 0 | −0.031 | 0 | −0.949 | −1.065 | −0.406 |
MCARI2 | 147.4 | 0 | 0 | 0 | 0 | 0.160 | 0 |
MSAVI2 | 138.8 | −0.396 | −0.035 | −0.077 | 0.154 | 0 | 0.091 |
WBI | 73.2 | 0.265 | 0.244 | 0.143 | 0 | 0.004 | 0.179 |
104.3 | 0 | 0.136 | −0.038 | 0 | 0 | 0 | |
DEM | 5.1 | 0.004 | −0.023 | 0.010 | −0.048 | −0.160 | 0.025 |
EM31 | 2.2 | 0 | 0.042 | −0.002 | −0.063 | −0.200 | 0 |
EM38 | 5.2 | 0 | −0.032 | −0.071 | −0.251 | −0.204 | −0.149 |
GRDR | 3.6 | 0 | 0.004 | 0 | 0 | 0 | 0.076 |
GRTh | 3.4 | −0.009 | −0.043 | −0.014 | 0 | 0.012 | 0 |
Intercept | 0.014 | 0.206 | 0 | 2.356 | 2.566 | 1.324 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermanns, F.; Pohl, F.; Rebmann, C.; Schulz, G.; Werban, U.; Lausch, A. Inferring Grassland Drought Stress with Unsupervised Learning from Airborne Hyperspectral VNIR Imagery. Remote Sens. 2021, 13, 1885. https://doi.org/10.3390/rs13101885
Hermanns F, Pohl F, Rebmann C, Schulz G, Werban U, Lausch A. Inferring Grassland Drought Stress with Unsupervised Learning from Airborne Hyperspectral VNIR Imagery. Remote Sensing. 2021; 13(10):1885. https://doi.org/10.3390/rs13101885
Chicago/Turabian StyleHermanns, Floris, Felix Pohl, Corinna Rebmann, Gundula Schulz, Ulrike Werban, and Angela Lausch. 2021. "Inferring Grassland Drought Stress with Unsupervised Learning from Airborne Hyperspectral VNIR Imagery" Remote Sensing 13, no. 10: 1885. https://doi.org/10.3390/rs13101885
APA StyleHermanns, F., Pohl, F., Rebmann, C., Schulz, G., Werban, U., & Lausch, A. (2021). Inferring Grassland Drought Stress with Unsupervised Learning from Airborne Hyperspectral VNIR Imagery. Remote Sensing, 13(10), 1885. https://doi.org/10.3390/rs13101885