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Abstract: The 2018–2019 Central European drought had a grave impact on natural and managed
ecosystems, affecting their health and productivity. We examined patterns in hyperspectral VNIR
imagery using an unsupervised learning approach to improve ecosystem monitoring and the un-
derstanding of grassland drought responses. The main objectives of this study were (1) to evaluate
the application of simplex volume maximisation (SiVM), an unsupervised learning method, for the
detection of grassland drought stress in high-dimensional remote sensing data at the ecosystem scale
and (2) to analyse the contributions of different spectral plant and soil traits to the computed stress
signal. The drought status of the research site was assessed with a non-parametric standardised
precipitation–evapotranspiration index (SPEI) and soil moisture measurements. We used airborne
HySpex VNIR-1800 data from spring 2018 and 2019 to compare vegetation condition at the onset of
the drought with the state after one year. SiVM, an interpretable matrix factorisation technique, was
used to derive typical extreme spectra (archetypes) from the hyperspectral data. The classification of
archetypes allowed for the inference of qualitative drought stress levels. The results were evaluated
using a set of geophysical measurements and vegetation indices as proxy variables for drought-
inhibited vegetation growth. The successful application of SiVM for grassland stress detection at the
ecosystem canopy scale was verified in a correlation analysis. The predictor importance was assessed
with boosted beta regression. In the resulting interannual stress model, carotenoid-related variables
had among the highest coefficient values. The significance of the photochemical reflectance index
that uses 512 nm as reference wavelength (PRI512) demonstrates the value of combining imaging
spectrometry and unsupervised learning for the monitoring of vegetation stress. It also shows the
potential of archetypical reflectance spectra to be used for the remote estimation of photosynthetic
efficiency. More conclusive results could be achieved by using vegetation measurements instead
of proxy variables for evaluation. It must also be investigated how the method can be generalised
across ecosystems.

Keywords: vegetation stress detection; unsupervised machine learning; drought; hyperspectral
VNIR data; monitoring solutions; photochemical reflectance index; pattern recognition; plant traits;
grassland; imaging spectrometry

1. Introduction

The changing background climate state is projected to lead to an increase in the fre-
quency and severity of extreme weather and climate events in many parts of the world [1–3].
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In Europe, prolonged droughts are among the most damaging natural hazards, both so-
cioeconomically and environmentally [4]. Severe droughts impair agri- and silvicultural
productivity, and they can have longer-term effects on vegetation health [5]. Hydrometeo-
rological extremes are also a major contributor to interannual carbon uptake variability [6],
adding to the instability of the strength of the terrestrial carbon sink. Pre-symptomatic
vegetation stress monitoring is essential for analysing changes in plant functioning linked
to extreme events like the 2018–2019 Central European drought on a broader scale. Remote
sensing techniques for fast and reliable stress monitoring become increasingly valuable.
Early vegetation stress detection is not only useful for improving land surface and ecosys-
tem models, but also an important tool in a variety of fields, such as precision agriculture [7],
forest resource management [8], ecosystem services maintenance [9], or biodiversity and
geodiversity conservation [10,11].

At present, a wide range of remote sensing technologies is available for vegetation
stress and productivity monitoring, which is attributable to the success of open research
data and algorithms [12], among other things. Multi- and hyperspectral optical sensors
collect data from the visible, infrared, and thermal wavelength domains. Active sensors,
like synthetic-aperture radar, radiometers, and lidar, provide information from other
regions of the electromagnetic spectrum [13] or assess vegetation structure [14]. Multi-
angular remote sensing [15] and model-based approaches [16] enable the estimation of
key variables, like sun-induced fluorescence [17]. The fusion of multisensoral datasets is
increasingly used for tasks, such as correcting optical measurements that are influenced by
canopy structure and viewing geometry [18], or increasing spatiotemporal resolution of
imagery [19].

The narrow wavelengths that are typically recorded in the VNIR (400–1300 nm)
and SWIR (1300–2500 nm) regions by imaging spectrometers hold information regarding
pigment composition, structure, and water content of vegetation [20], which are influenced
by plant responses to different stressors [21]. The identification of empirical relationships
between pigment concentration and a combination of hyperspectral bands or derivative
spectra enabled the development of spectral indices, thus spectral features of interest could
be located [22]. When compared to broadband indices, like the NDVI, narrowband indices
are more specific, but also more afflicted by factors, such as canopy structure, illumination,
or atmospheric conditions [23]. Therefore, the established relationships cannot simply
be extrapolated beyond the biological systems or conditions that they were developed
for [24]. A notable exception is the photochemical reflectance index (PRI), which is a reliable
proxy for photosynthetic efficiency over a range of species and biomes [25]. Full spectrum
analysis methods are a way to circumvent the extrapolation limits of narrowband indices.
By integrating the signals of stress responses from different spectral regions, such analyses
reduce the uncertainty in predictions [22] and they achieve earlier stress detection, but
require researchers to cope with a low signal-to-noise ratio [26].

Methods from the field of machine learning are increasingly used for evaluating the
high-dimensional data cubes that are generated by hyperspectral sensors. Supervised
learning algorithms of varying complexity can be used to fit statistical models with high
predictive power when labeled observation data exists [7,27,28]. If no reference data is
available, unsupervised learning algorithms can be used to infer latent variables, thus
reducing the dimensionality of hyperspectral datasets in order to detect informative pat-
terns [29]. Matrix factorisation algorithms are a popular group of techniques for latent
variable inference. A new descriptive representation of a high-dimensional input matrix
is generated by decomposing it into a matrix of latent components and a coefficient ma-
trix [30]. Various matrix factorisation methods have been developed and used in all kinds
of data mining applications [31–34]. They have also been brought to use for different
remote sensing tasks, such as image fusion, unmixing, or feature classification [35–39].

Simplex volume maximisation (SiVM) is a matrix factorisation algorithm that com-
bines the advantage of intuitively interpretable results with computational efficiency [40],
which makes it a promising tool for monitoring tasks. Here, data are clustered by typical
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extreme spectra (archetypes), which can be used for estimating vegetation stress levels.
However, as far as we know, the method has only been used in small-scale experimental
settings. Therefore, this study aims at (1) evaluating the application of SiVM to ecosystem
scale hyperspectral VNIR data of a grassland site for qualitative drought stress classifica-
tion and (2) analysing the contributions of different evaluation variables to the inferred
stress signal.

Image acquisition was conducted during two aircraft campaigns. The first in spring
2018 at the onset of the 2018–2019 European drought, and the second in spring 2019
after one year of prolonged drought conditions. The drought status of the grassland
research site was assessed with a non-parametric implementation of the standardised
precipitation-evapotranspiration index (SPEI) [41] and soil moisture measurements. Be-
cause no vegetation measurements were made, statistical evaluation was based on a set of
plant and soil trait proxy variables, including a number of established vegetation indices
that are sensitive to drought-inhibited vegetation growth. After a correlation analysis,
different models were fit for explanatory variable analysis using boosted beta regression.

2. Materials and Methods
2.1. Study Site and Drought Status

The intensive research site “Am Grossen Bruch” (DE-GsB) is part of the Bode catch-
ment hydrological observatory that is a component of the German TERrestrial ENvironmen-
tal Observatories (TERENO) [42,43]. TERENO sites are equipped with numerous sensors
to monitor ecosystem behaviour and status, such as carbon, water, and energy fluxes with
the eddy covariance method, distributed soil moisture, as well as biotic and abiotic drivers.
DE-GsB is also an associated site of the Integrated Carbon Observation System Research
Infrastructure (ICOS) that aims to provide consistent long-term measurements of sources
and sinks of greenhouse gases [44]. Being located in the Central German Lowland in the
state of Saxony-Anhalt (see Figure 1), the region surrounding DE-GsB is characterised
by a drier subcontinental climate, which is partly due to the rain shadow of the Harz
mountains. The area has a negative climatic water balance [45], which makes it susceptible
to more severe impacts from drought events. DE-GsB is a mesophilic grassland that is
regularly used for cattle grazing. It is located near a water channel (52.03◦N, 11.10◦E) and
is affected by seasonal flooding. Testing SiVM at the ecosystem scale with data from a flat,
mixed grassland has certain advantages, such as minimizing the influence of uncontrolled
variables, like species composition, canopy structure, and leaf angle distribution.

We assessed the hydrological conditions of DE-GsB with the SPEI, which is used for
analysing anomalies in the climatic water balance from a distributional perspective. Thus,
it can be used for the standardised detection of droughts and comparisons of drought
severity in a statistically robust way [46]. We used a non-parametric approach to determine
an empirical distribution function using a kernel density estimator, following the method
that was described by Vergni et al. [47]. Gridded (1× 1 km) daily meteorological data
from a follow-up product of the High-Resolution Dataset of Water Fluxes and States for
Germany [48] were used as input data, covering a time span from 1947–2019. These forcing
data itself are derived from weather station data from the German Meteorological Service
(Deutscher Wetterdienst, DWD), which were interpolated with external drift kriging, using
terrain elevation as the drift variable. We used a Gaussian kernel for SPEI calculation and
optimised the bandwidth selection with cross validation [49]. In addition, we evaluated
continuous soil water content (SWC) data that were derived from a profile with TDR
measurements in three depths (CS616, Campbell Scientific, Shepshed, UK) to assess the
severity of the local soil water deficiency resulting from the prolonged drought. This was
done to determine whether the two images showed contrasting environmental conditions,
justifying factorisation with SiVM.
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Figure 1. (a) Location of the research site “Am Grossen Bruch” (DE-GsB) within Germany (CRS:
EPSG:3857). (b) RGB representation of the 2018 hyperspectral flight strip showing the surroundings
of the study area (CRS: EPSG:32632).

2.2. Airborne Data

Flight campaigns for hyperspectral image acquisition on the DE-GsB site were con-
ducted on 7 May 2018 and 23 April 2019. The images were collected using a HySpex
VNIR sensor (NEO, Oslo, Norway) mounted on a Cessna 207 airplane from an altitude
of 3 km a.g.l between 11:30 and 13:30 CEST under clear sky conditions. The spectra were
recorded over the range 409–989 nm with a spectral resolution of 3.2 nm (see Table 1).
Raw HySpex image blocks were radiometrically and geometrically corrected for surface
reflectance with HySpexRAD and HySpexNAV (NEO). Georeferencing and calibration
were performed with PARGE [50] using a digital elevation model (DEM) with an original
resolution of 10 m obtained from the German Federal Agency for Cartography and Geodesy
(Bundesamt für Kartographie und Geodäsie, BKG) and ground control points set in ENVI
(Harris Geospatial Solutions, Boulder, CO, USA). Atmospheric correction was done with
ATCOR4 [51] with visibility values from the nearby (10 km distance) Ummendorf DWD
weather station [52]. The resulting image cubes had a spatial resolution of 0.5 m (2018) and
0.4 m (2019).

The atmosphere-corrected hyperspectral imagery went through the following prepro-
cessing routines: The 2018 dataset was resampled to 0.4 m using cubic spline interpolation
to align the spatial resolution and extent of both datasets. The 0.4 m target resolution was
selected to increase the sample size for the statistical evaluation. The data were tested
for noisy bands and bad pixels with a correlation-based approach [53]. The bands were
deemed to be noisy when the Pearson correlation coefficient to adjacent bands/pixels fell
below 0.8. Bad pixel candidates were selected as pixels with a value of at least 80% of
the maximum band value. If the candidate value exceeded the maximum value of the
same pixel in adjacent bands by 90% or more, the pixel was considered to be abnormal.
Pixels with zero reflectance in all bands were also classified as bad pixels. All of the
identified noisy bands were removed from all image cubes, resulting in the removal of
the first seven of 182 bands from all data sets. Bad pixels were masked and excluded
from factorisation. Except for the statistical evaluation of results, all of the data prepro-
cessing and analyses were implemented in Python 3.7.3 (Python Software Foundation,
https://www.python.org/, accessed on 23 February 2021).

https://www.python.org/
https://www.python.org/
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Table 1. Specification of the hyperspectral sensor used for image acquisition.

Recording Date Ground Resolution Field of View Swath Spectral Range Spectral Resolution Sensor Platform
m ◦ m nm nm

7 May 2018 0.5 16 508 409–989 3.2 HySpex VNIR-1800 Cessna 207
23 April 2019 0.4 16 508 409–989 3.2 HySpex VNIR-1800 Cessna 207

2.3. Geophysical Data

The geophysical measurements originate from a campaign in March 2014 that was
conducted following a 10 day period of heat and no precipitation. Measurements were
conducted with electromagnetic induction (EMI) sensors, which establish magnetic fields
at the soil surface and measure the induced magnetic field of subsurface materials [54].
The sensor models EM38DD and EM31MK2 from Geonics, Canada were used (EM38
and EM31 in the following). Additionally, gamma ray (GR) emissions of Thorium 232Th
were measured using a portable gamma ray spectrometer from GF instruments. All of the
sensors were attached to sledges and pulled over the research site with GPS positioning to
measure apparent electrical conductivity (ECa) and nuclide concentrations [55].

ECa is controlled by a number of soil properties and states, such as soil texture, layer-
ing, or porosity [56], which can influence vegetation ecophysiology indirectly. Concerning
soil moisture, Martini et al. [57] concluded that there is a complex interplay between factors
controlling ECa and soil moisture, but not in any case a direct link. EM31 and EM38
measurements were taken in vertical coil orientation, with an effective penetration depth
up to 1.5 m (EM38) and 4.0 m (EM31), respectively [55]. The gamma ray measurements are
related to properties that are influenced by the source rock, soil genesis, management (e.g.,
pH), and soil moisture. For spatial interpolation, the transects were subsampled and then
examined in a variogram analysis to find the best linear unbiased estimator for ordinary
kriging using the GSTools module (v1.2.1) [58].

2.4. Unsupervised Classification with Simplex Volume Maximisation

Figure 2 provides an overview of the analysis procedure. SiVM allows the calculation
of convexity constrained latent components [40], similar to precursor algorithms like
Convex-NMF (C-NMF) [59] or Archetypal Analysis (AA) [60]. In the case of clustering
of hyperspectral data, convex latent components are desirable as they are identical with
actual measured data points, assigning them a physical meaning [61]. Furthermore, in
contrast to common clustering methods, like k-means or DBSCAN, whose cluster centers
represent average values of certain data regions, convexity constrained factorisation yields
the characteristic extreme data points (archetypes) of a dataset [40]. These properties
facilitate the interpretability of the resulting latent variable model. One major advantage of
SiVM over similar factorisation algorithms is that it runs in linear time. This feature makes
it a suitable algorithm for processing large amounts of data, e.g., hyperspectral image cubes
at landscape scale. So far, SiVM has been used successfully for water stress detection and
prediction on the individual plant scale [26,61,62]. In this study, its applicability to the
ecosystem scale was evaluated.

Before factorisation, all of the image cubes were transposed and concatenated along
the band axis, which results in a data matrix Vd×n with n samples of d-dimensional vectors.
With SiVM, Vd×n was decomposed into a basis (archetype) matrix Wd×k and a coefficient
matrix Hk×n by iterative distance computations only. Thurau et al. [40] showed that
fitting a (k− 1)-simplex of maximal volume to the d-dimensional input data minimizes
the Frobenius norm ‖V −HW‖, a common optimisation target in matrix factorisation.
The simplex approximates the convex hull of the data cloud, and it’s vertices are the
archetypical data points in W. When compared to solving the quadratic optimisation
problem as proposed by Cutler and Breiman [60] in their work on Archetypal Analysis, this
approximation is computationally more efficient, and it minimizes the residual of H while
preserving convexity: For hi = h1, ..., hk, hij ≥ 0 and ∑i hij = 1. The number of archetypes
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should be low enough to enable generalisation, but also high enough to cover a range
of different extreme reflectance signatures. In this study, the number of archetypes was
set to 30. To develop a qualitative classification of grassland stress levels from the latent
components, the reflectance signatures in W were classified into three categories. Some
archetypes resembled the spectra of healthy plants, others showed signs of stress, and a
third group comprised spectra of non-vegetated pixels (background). The classification of
archetypes was based on the results of field and lab experiments [63–68], visual assessment
of archetype maps, and expert knowledge.

Figure 2. Overview of the main methodological workflow.

From a probabilistic viewpoint, the archetypes span a probability space in which each
data point can be expressed as a convex combination of the archetypes. In other words,
the coefficients hij in H provide a measure of similarity between any input pixel and the
archetypical reflectance spectra in W [26]. Therefore, all of the data points in X can be
viewed as draws from a specific Dirichlet distribution. This distribution is often used for
proportional data and it has the advantage of imposing the convexity constraint on the
coefficients in H [61]. The Dirichlet has one parameter α, which is a k-dimensional vector
and it can be estimated with a maximum-likelihood approach as described by Minka [69].
The Dirichlet has a useful aggregation property that allows to merge parts of the sample
space. For example, if one tosses a six-sided dice, then the probability of all rollable
numbers can be described by Dir(α1, ..., α6). Now, if the goal is to obtain the probability
of rolling odd and even numbers, the aggregated (two-event) sample space still follows a
Dirichlet distribution with aggregated parameter Dir(α1 + α3 + α5, α2 + α4 + α6) [70]. In
the same manner, archetypes were lumped together according to their category, “healthy”,
“stressed”, or “background”. This allowed creating maps of drought stress by summarizing
coefficient values of healthy, stressed, and background archetypes, which are abbreviated as
ζ, ν and ξ below. Each resulting aggregated archetype is still beta-distributed. Factorisation
was performed with the pymf module (v0.3) [71].

2.5. Evaluation with Spectral Indices and Geophysical Measurements

Unsupervised learning techniques cluster datasets by exploring structures and pat-
terns in the data and do not rely on ground truth (labels) for model building. Since
vegetation measurements were not available for the research site DE-GsB, an internal
validation of model performance was not feasible. An external evaluation that was based
on a set of reliable proxy variables was implemented instead. This set consists of vegetation
indices, which capture spectral plant traits. These traits are proxies for drought-inhibited
plant growth resulting from changes to different biochemical, physiological, and structural
plant traits [72]. A number of geophysical measurements as proxies for different soil traits
and a high-resolution DEM derived from UAV data were included in the evaluation data
set. We selected VNIR vegetation indices that either have been used in stress detection
before or are related to ecophysiological traits impacted by drought stress, although those
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relationships are not always linear. For most of them, successful application to grassland
sites had been reported in the literature (see the following paragraphs). The indices range
in complexity and use a variety of distinct spectral feature combinations. Table 2 provides
details about the geophysical measurements and the DEM used in the evaluation dataset,
while Table 3 gives an overview about the used vegetation indices.

Table 2. Overview of the variables in the evaluation dataset, which were not derived from the
hyperspectral imagery.

Recording Date Type of Measurement Derived Variable

6 Mar. 2014 Electromagnetic induction with EM31 ECa (mS/m)
6 Mar. 2014 Electromagnetic induction with EM38 ECa (mS/m)
6 Mar. 2014 Gamma-ray spectrometry Thorium232 (ppm)
6 Mar. 2014 Gamma-ray spectrometry Dose rate (nGy/h)
18 Feb. 2015 Photogrammetry DEM (m.a.s.l.)

The broadband indices ChlREopt and CarREopt are used as proxies for vegetation chloro-
phyll (Cab) and carotenoid content (Cxc). The indices were developed by Féret et al. [24]
using statistical models and model inversion on a large number of experimental and syn-
thetic datasets in order to integrate variability between species. The red edge normalised
difference vegetation index (RENDVI) was used to include an established chlorophyll-
related vegetation index. The index is applicable for a broad range of species and it does
not saturate for high-chlorophyll cases like dense canopies [73].

The PRI is correlated with short-term (minutes) changes of light use efficiency (LUE)
through tracking variations in the de-epoxidation state of xantophylls, and water-stress
indicators, like stomatal conductance [74–76]. It has proven to be applicable across a wide
range of different types of leaf morphology, photosystems, and ecosystems. Beyond that,
the PRI allows for the detection of long-term (weeks to months) changes of LUE caused by
shifts in the Cxc/Cab ratio [77–79] and is, therefore, correlated with seasonal variations in
net CO2 uptake [80]. Plant stress results in an increase of the Cxc/Cab ratio and a decrease
of photosynthetic LUE, which makes PRI well-suited for water stress detection. When com-
pared to the original formulation, the PRI512 developed by Hernández-Clemente et al. [75]
is less sensitive to structural effects. We assume the former index to have very similar proxy
capabilities because the PRI512 has the same diagnostic band as the PRI.

The combination of a chlorophyll-sensitive red edge band and a NIR band makes
the CTR2 an effective ratio index for stress detection [66,81]. The improved modified
chlorophyll absorption ratio index (MCARI2) is a chlorophyll-corrected vegetation index
for green LAI estimation [82]. In contrast to its predecessors, the index is less sensitive to
variability in Cab concentrations, and it has performed well when applied to grasslands for
LAI estimation [83]. The improved modified soil-adjusted vegetation index (MSAVI2) [84]
was included in the analysis to account for potential soil effects. It has been applied for
LAI estimation and drought detection on different grassland sites [85,86]. Because MSAVI2
is a broadband index, it was calculated from the hyperspectral data based on Sentinel-2
band specifications.

Changes in RWC can be tracked with the WBI under progressive water stress [87,88].
However, studies found that derivative spectra of the slope of the NIR water absorption
feature outperformed the reflectance-based water indices in RWC estimation in different
experimental settings, including grassland sites in the Netherlands and UK [89,90]. WBI
and the first-order derivative of the reflectance at 950.6 nm ( f ′(ρ950.6)) were both added to
the set of evaluation variables. Derivatives were calculated by applying Savitzky–Golay
smoothing with a window size of 67 nm and second-order polynomial fitting [91].
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Table 3. List of vegetation indices used for evaluation of the SiVM-based stress level estimates
(ρ denotes reflectance at a specific wavelength or wavelength range).

Index Name Abbr. Equation Ref.

Opt. chlorophyll red edge index ChlRE opt (ρ680–730
−1 − ρ780–800

−1)× ρ755–780 [24]
Opt. carotenoid red edge index CarRE opt (ρ510–530

−1 − ρ680–730
−1)× ρ760–780 [24]

Red edge normalised difference vegetation index RENDVI (ρ750 − ρ705)/(ρ750 + ρ705) [73]
Photochemical reflectance index 512 PRI512 (ρ531 − ρ512)/(ρ531 + ρ512) [75]
Carter index 2 CTR2 ρ695/ρ760 [81]

Modified chlorophyll absorption ratio index 2 MCARI2 1.5[2.5(ρ800−ρ670)−1.3(ρ800−ρ550)]√
(2ρ800+1)2−(6ρ800−5

√
ρ670)−0.5

[82]

Modified soil-adjusted vegetation index 2 MSAVI2
(2ρNIR+1−

√
(2ρNIR+1)2−8(ρNIR−ρRED))

2 [84]
Water band index WBI ρ900/ρ970 [87]
First derivative @ 950.6 nm - f ′(ρ950.6) [90]

2.6. Statistical Inference

Spatial autocorrelation should be minimised for the statistical evaluation of the latent
variable model. Therefore, a variogram analysis was conducted, followed by a systematic
subsampling of data points. Background archetypes were used to exclude data points
with ξ ≥ 0.4. After the removal of defective (all-zero) pixels, the evaluation data set
comprised 832 data points from both 2018 and 2019. Statistical analyses were carried out
with R (v3.6.3) [92]. In a first step, a Pearson correlation matrix was computed to assess the
agreement between ζ, ν and the evaluation data set using the package corrplot (v0.84) [93].
In addition, the matrix gave a first impression about the occurrence of multicollinearity
among evaluation variables.

A regression approach was adopted for statistical inference and multicollinearity
testing. Because ζ, ν are limited to the standard unit interval (0, 1), beta regression, as
introduced by Ferrari and Cribari-Neto [94], was used. Their parameterisation of the beta
density uses µ as the mean of the response and φ as a precision parameter. The density of y
is then defined as

f (y; µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1, (1)

where 0 < µ < 1, φ > 0, and Γ(·) is the gamma function. For regressing the dependent
variable on a set of independent variables, the logit link is used. The estimation of coeffi-
cients and distribution parameters is based on maximum likelihood. Beta regression was
carried out using the betareg package (v3.1-3) [95]. Multicollinearity in the fitted model
was assessed with the mctest package (v1.3.1) [96]. The condition number of the regressor
matrix X and variance inflation factors (VIF) were used as criteria to determine collinearity
among predictor variables. The objective of the statistical inference was to determine those
variables (and, hence, plant traits) that most strongly influence the stress signal of the
DE-GsB grassland site.

Multicollinearity leads to unstable coefficient estimates and biased statistics [97]. The
detection of multicollinearity in the fitted beta regression model required an alternative
model fitting approach that is less sensitive to collinearity. Boosted beta regression is
a statistical learning technique that is suitable for this purpose. The algorithm is based
on the principles of gradient boosting [98]: In an iterative process, weak learners are fit
to the data to maximise the negative gradient of a given loss function. The model is
updated in every iteration, eventually yielding a strong learner. The implementation of
boosted beta regression uses the gamboostLSS [99] framework, which is an extension of
generalised additive models for location, scale, and shape (GAMLSS), as introduced by
Stasinopoulos and Rigby [100]. In contrast to many classical methods, like generalised
additive models (GAM), this flexible, semiparametric approach to regression does not
restrict the response variable to follow an exponential family distribution. Moreover, it is
not restricted to modeling the conditional mean of the response. Instead, every distribution
parameter can be modeled as a function of different predictor variables. In the case of
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beta regression, this allows accounting for overdispersion by regressing φ on one or more
predictor variables [101]. The predictor-response relationships are not limited to linear
functions, but also encompass nonlinear and smooth functions, e.g., regression splines. The
additive predictors are computed in the same way as in traditional GAMs [102].

Component-wise fitting of covariates constitutes the link between gradient boosting
and GAMLSS. In the multivariate case, only one component of the regressor matrix X
is fitted to the gradient vector per weak learner [103]. In each boosting iteration, the
model is updated with the best-performing weak learner, which leads to a strictly additive
structure [99]. For boosted beta regression, a weak learner will typically be a method, like
univariate linear regression, penalised regression splines, or ridge regression. Because all of
the distribution parameters are estimated, the algorithm constructs a distinct additive pre-
dictor for each distribution parameter by component-wise updates of separate prediction
functions per iteration. Optimizing beta regression with gamboostLSS can be written as

(µ̂, φ̂) ≤ arg min
ηµ ,ηφ

(
EY,X

[
ρ{Y, ηµ(X), ηφ(X)}

])
, (2)

where ηµ and ηφ are the additive predictors, ρ is the negative log-likelihood, and (X, Y) are
predictor matrix and response vector [99]. Although, in practice, instead of minimizing
the negative log-likelihood, the loss function is minimised by gradient descent, as the
expected value is unknown. When setting an early stopping iteration mstop, this approach
has some beneficial properties: covariates that are never selected in the updating process
are excluded from the final model [104]. Thus, data-driven variable selection to exclude
less important predictors is performed, which alleviates collinearity [101]. Moreover, the
coefficients of the selected predictors are shrunk towards zero. Similar to regularised
regression approaches, early stopping in gamboostLSS introduces an estimation bias in
exchange for decreased variance, which results in a more parsimonious model [105]. In
low-dimensional settings with few predictors and many observations, boosting techniques
are known to include too many noisy variables [106]. Therefore, mstop was set to 300 to
achieve sufficient variable selection and shrinkage, and the learning rate was set to 0.05.
Three different models were fit: besides the full (interannual) model for the combined
2018–2019 dataset, two subset models were fit using only data points from 2018 or 2019.
The evaluation datasets that were used in fitting of the models were mean-centered and
standardised independently, and a global intercept variable was added. Boosted beta
regression was performed using the gamboostLSS package (v2.0-1.1) [107].

3. Results
3.1. Drought Status

We investigated the drought and soil water status of the research site with three-
months SPEI values and relative soil water content measurements (see Figure 3). The
SPEI time series shows that the 2018 hyperspectral flight took place at the onset of an
exceptional meteorological drought period that lasted until early 2019. At the time of
first image acquisition, soil moisture had started to decrease. However, after a rather cool
and wet summer and winter in 2017, soil moisture at 30 cm depth was still around 50%.
During spring 2018, soil moisture was decreasing rapidly and SPEI values of ≤−2 show
persistent extreme drought conditions in summer 2018. The second image acquisition flight
took place in spring 2019 after a winter with near-average precipitation and temperature
conditions and subsequent re-emerging drought conditions, as indicated by the SPEI values.
The soil moisture time series gives insight into the impact of the 2018–2019 drought on
water availability at DE-GsB as the relative water content was quickly approaching the low
levels of 2018 again. Because water reservoirs were insufficiently replenished by winter
precipitation, the second image acquisition date is characterised by rather low soil water
contents at around 25 or 35%. The analysis of these drought indicators confirms that the
two hyperspectral scenes show contrasting environmental conditions that can be deemed to
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be sufficiently extreme for application of SiVM. It also illustrates the intensity and duration
of the drought period that affected the research site between the two flight campaigns.

Figure 3. Time series of 91-days/3-months standardised precipitation-evapotranspiration index
(SPEI) and relative soil water content (SWC) values for the research site DE-GsB. Vertical dashed
lines indicate the dates of hyperspectral imaging flights.

3.2. Archetypes and Stress Maps

Matrix factorisation with SiVM resulted in a set of archetypes that encompass a range
of spectra with distinct features. Figure 4 shows the classified archetypes. The background
class holds more than half of all calculated archetypes due to the wide range of observed
non-vegetation land cover. They mostly lack the trough in red reflectance and the sharp
increase in the red edge area, which are characteristic for vegetation reflectance spectra [108].
Differences between healthy and moderately stressed vegetation are subtle. Vegetation
stress leads to an increase in red reflectance, which reduces the red edge slope until the red
reflectance trough around 680 nm disappears [23]. Healthy archetypes show a decrease in
NIR reflectance beyond 900 nm, which is not the case for most stressed archetypes.

Figure 4. Classified archetypical reflectance spectra from the research site “Am Grossen Bruch” (DE-GsB). (a) Archetypes
classified as “healthy” or “stressed”. (b) All of the non-vegetation spectra were classified as “background”. The vertical
blue line marks the beginning of the red edge slope at 685 nm.

Figure 5 shows the distribution of archetype classes in hybrid maps using double layer
visualisation [53] next to RGB representations of the same map section. For the image taken
at the onset of the 2018–2019 drought, the average values for ζ (healthy) and ν (stressed)
are 68.6 and 26.1%. The corresponding values for the image acquired one year later are 37.7



Remote Sens. 2021, 13, 1885 11 of 23

and 56.6%, which indicates intensified drought conditions. Both scenes contain patches of
background signals also well visible in the true color images.

(a) 7 May 2018 (b) 23 April 2019
Figure 5. Maps of the research site “Am Grossen Bruch” (DE-GsB). RGB representations were computed with the HSI2RGB
python module [109]. The double layer maps show the distribution of archetype classes. Archetype coefficient values per
pixel always add up to one due to the convexity constraint of simplex volume maximisation (CRS: EPSG:32632).

3.3. Correlation Analysis

The results shown in Figure 6 show an overall good agreement of the computed
qualitative stress metric and vegetation indices, implying a robust performance of SiVM-
based stress classification at the canopy level. The correlation matrix of the aggregated
archetypes ζ and ν, as well as the evaluation variables, demonstrates the correspondence
between the latent variable-based stress index and established vegetation growth proxies as
well as potentially relevant geophysical measurements. Correlation analysis of the spectral
indices revealed considerable collinearity among the predictor variables. The absolute
correlations of ζ are consistently stronger than for ν. We assume this to be a consequence
of the stronger similarity between stressed and background spectra that makes an exact
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distinction of these categories more difficult. Therefore, we focused on ζ as a response
variable in the statistical analyses. The RENDVI as a proxy for Cab content and plant vitality
is positively correlated with ζ. Likewise, the two optimised pigment indices ChlREopt and
CarREopt point to higher pigment concentrations in less stressed vegetation, with CarREopt
exhibiting the strongest correlation of all evaluation variables (r = 0.89, p < 0.001). Of the
two vegetation indices that are related to structural traits, the MCARI2 exhibited slightly
higher correlation values than the MSAVI2. The results indicate a larger photosynthetically
active leaf area in vegetation with higher ζ values, as expected. The RWC-related spectral
indices WBI and f ′(ρ950.6) lead to very similar results and suggest a good level of agreement
between the latent variable-based stress index and plant water content.

The correspondence between the ECa and GR measurements, as well as stress level
estimates ζ/ν, is low. For these soil proxy variables, the strongest correlations result
from the EM38 measurements (r = −0.28, p < 0.001). The DEM exhibits similarly low
correlation values. Geophysical variables and DEM seem to be rather unrelated to the
computed stress signal. Nevertheless, the variables were included in the statistical model
to verify this assertion by variable selection.

Figure 6. The correlation matrix of stress metrics ζ, ν and the evaluation dataset, which includes spec-
tral indices, geophysical measurements and a digital elevation model (DEM). All of the correlations
are highly significant (p < 0.001).

3.4. Boosted Beta Regression

Before interpreting the results of the statistical analysis, multicollinearity diagnostics
were performed with a beta regression model that included ζ as the dependent and all
evaluation variables as the independent variables. The beta distribution parameters µ and
φ were both estimated by the full set of regressors. The regressor matrix has a condition
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number of 3388, which suggests severe multicollinearity. VIF also indicate multicollinearity
in all vegetation indices, except for the PRI512, which had a VIF of 6.8 (see Table 4). While
CarREopt had a VIF of 19, all other vegetation index VIF values were in the range of 73–216,
which indicates severe multicollinearity. The rest of the predictor variables exhibited
substantially lower VIF values.

Table 4 shows the estimated coefficient values from the three different model fits for
the expected value µ and the precision parameter φ. The interannual full model (FM)
results show that substantial variable selection has taken place. Four out of nine spectral
indices that were related to plant traits were not included in the estimation of µ. MCARI2,
CTR2, and RENDVI were excluded or marginalised in all µ models. Likewise, all of the
geophysical variables and DEM were either excluded or shrunk towards zero in all µ
models. CarREopt is the most important predictor with the highest µ coefficient value in
all models. Thus, increased Cxc is associated with an increased probability of observing a
healthy pixel. The same applies to higher PRI512 values in FM µ. This dependency is much
weaker in the subset models M18 µ and M19 µ. Increased WBI values are associated with
less vegetation stress in all models, with weaker relationships in the subset models. WBI
and f ′(ρ950.6) had been almost perfectly collinear (r = −0.98) in the correlation analysis, so
that the effect of the derivative reflectance did not contribute to FM µ. The situation is less
clear in the subset models where both of the predictors that are related to relative water
content contribute to the regression, although f ′(ρ950.6) has relatively small coefficient
values. In contrast to the results of the correlation analysis, the coefficients for ChlREopt
and MSAVI2 are negative in M18 µ and M19 µ. e.g., MSAVI2 is related to green LAI, but
a correspondence of lower LAI and healthier vegetation is implausible. The inclusion of
collinear variables induces instability in the model and it can result in erratic coefficient
estimation. We assume this to be the case for ChlREopt and MSAVI2, as both are highly
correlated with CarREopt. In the subset models, MSAVI2 shows small, negative coefficient
values, while the picture is not clear for ChlREopt. In conclusion, the strongest predictors
in the full model are linked to carotenoids (CarREopt, PRI512), LAI (MSAVI2), and water
content (WBI). The subset µ models contain three main predictors: CarREopt, ChlREopt, and
WBI. The difference is especially large for the PRI512 which is only relevant in the FM µ.
Coefficients for M19 µ are generally smaller, probably due to the prevalence of stressed
vegetation and, hence, the smaller range of stress values in the 2019 dataset.

Table 4. Variance inflation factors (VIF) from multicollinearity analysis of the evaluation variables.
The estimated coefficient values from fitting the interannual full model (FM) and subset models (M18,
M19) with boosted beta regression (early stopping after 300 iterations, learning rate: 0.05, coefficient
values rounded to three digits).

Name VIF FM µ M18 µ M19 µ FM φ M18 φ M19 φ

ChlREopt 88.4 −0.143 0.163 −0.215 −0.071 0 −0.390
CarREopt 19.1 1.018 0.721 0.435 −1.005 −1.587 0
RENDVI 214.3 0 0.052 0 0 0 0

PRI512 6.8 0.322 0.011 0.079 0.009 0.495 0
CTR2 139.0 0 −0.031 0 −0.949 −1.065 −0.406

MCARI2 147.4 0 0 0 0 0.160 0
MSAVI2 138.8 −0.396 −0.035 −0.077 0.154 0 0.091

WBI 73.2 0.265 0.244 0.143 0 0.004 0.179
f ′(ρ950.6) 104.3 0 0.136 −0.038 0 0 0

DEM 5.1 0.004 −0.023 0.010 −0.048 −0.160 0.025
EM31 2.2 0 0.042 −0.002 −0.063 −0.200 0
EM38 5.2 0 −0.032 −0.071 −0.251 −0.204 −0.149
GRDR 3.6 0 0.004 0 0 0 0.076
GRTh 3.4 −0.009 −0.043 −0.014 0 0.012 0

Intercept 0.014 0.206 0 2.356 2.566 1.324

CarREopt is the most relevant predictor in two out of three φ models. φ is a precision
parameter and, therefore, vegetation with higher CarREopt values is associated with a
larger variance of y. In contrast to the µ models, CTR2 was an important predictor in
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every φ model. Likewise, the DEM and geophysical variables have small, mostly negative
coefficients in the precision models, with the EM38 measurements being the most relevant.
However, in this study, focus was on the location parameter µ.

4. Discussion
4.1. Archetype Classification

The classification of archetypical spectra shown in Figure 4 is in line with results from
previous experiments. Several studies reported decreases in NIR reflectance beyond 850 nm
under increasing water stress [63,64,66]. Likewise, the water absorption feature around
970 nm becomes less pronounced [110]. The decrease in NIR reflectance over 900 nm
exhibited by healthy archetypes is probably related to stronger water absorption in healthy
vegetation. Nevertheless, NIR reflectance exhibits much more variability with varying
biophysical variables, like leaf angle distribution or LAI, when compared to the visible
spectrum [111]. Therefore, distinguishing healthy and stressed spectra is more reliable
when based on visible spectrum wavelengths [108]. Further criteria like NIR reflectance
should be consulted in the case of ambiguity because a classification of mixed pixels cannot
be highly selective.

The maps presented in Figure 5 show strongly increased vegetation stress levels across
the entire site in the 2019 image. This can be attributed to the prolonged drought in the
region (see Figure 3). The substantial decrease in soil water availability has a marked impact
on the pasture. The background patch that is shown in the upper left quarter of both images
is related to grazing and management of the site, while the extended background patch in
the lower left quarter of the 2018 image can be explained by a depression that is regularly
flooded. In Figure 5b, vegetation in the depression exhibits among the highest stress
levels owing to a combination of multiple stress agents. This shows that the computed
stress index does not distinguish between the two stressors that occurred in the area of
investigation before the second flight campaign.

The analysis of field data entails limited control of influencing factors. In the case
of the DE-GsB grassland site, this is particularly the case for grazing. Depending on its
intensity, grazing can be an additional stressor, but it can also have beneficial effects, such
as a reduction of competition between plants [112]. Because detailed information about
grazing intensity and timing was not available, we did not include the influence of grazing
in the analysis. Most grass species are shallow-rooted, so that their water status is more
dependent on surface soil water and, hence, precipitation [113]. Therefore, long-term stress
has different consequences for grassland species, which are often adapted to cope with
periods of water shortage when compared to deep-rooted plants. For such a dynamic
ecosystem, the comparison of the 2018 and 2019 stress classification should, thus, not be
interpreted as the aggregated effect of a prolonged drought period. The datasets rather
represent two extreme cases that can be viewed as reference points to observe anomalies.

4.2. Importance of Variables

We validated the latent variable-based stress classification with a set of evaluation
variables. As a general remark, these results are not based on direct vegetation measure-
ments, which limits the informative value of the computed relationships. Nevertheless, the
results of the correlation analysis imply the successful application of SiVM at the ecosystem
scale as the inferred stress signal has a high degree of correspondence with changes in plant
trait proxies indicating inhibited growth. Best-performing vegetation indices are CarREopt
(proxy for Cxc), PRI512 (proxy for Cxc/Cab ratio and LUE) and WBI (proxy for RWC). For
assessing the severity of vegetation stress, pigment-related indices ChlREopt, CarREopt, and
PRI512 are important. Carotenoids serve multiple purposes in plant physiology, playing
an important role in capturing light energy as well as dissipating excess energy [114].
Because they protect the plants’ photosystems from damage, e.g., counteracting different
forms of reactive oxygen species, increases in Cxc are usually observed under severe stress
conditions [115]. Therefore, we expected an increase in CarREopt (and hence Cxc) in stressed
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vegetation, but the lower CarREopt values in the 2019 dataset imply only moderate stress
conditions. However, one would expect Cab to decrease faster than total Cxc [73,116] under
stress conditions. Such an increase in the Cxc/Cab ratio would manifest in a tendency
towards lower PRI values [78]. In fact, the strong positive correlation of ζ and PRI512
suggests an increase in the Cxc/Cab ratio following the drought period.

These results can be explained by the sensitivity of grasslands to precipitation
patterns [117], which allows for faster recovery after rainfall events. Although soil water
was decreasing again in spring 2019, winter precipitation had allowed some replenishment
of the diminishing reservoirs (see Figure 3). The timing of data collection is another influ-
encing factor. Both of the images were taken in spring, so that the ecosystems were not
subject to the heat stress of the summer months. We conclude that the average vegetation
stress level at DE-GsB in spring 2019 was not severe, but moderate. This claim is also
supported by the shape of the archetypes in Figure 4. Severe stress leads to a notable “blue
shift” of the red edge transition point that moves to shorter wavelengths [65,118]. No such
shift could be observed in the stressed archetypes with the given spectral resolution of
3.2 nm.

Boosted beta regression was useful in removing redundant predictors from the model, de-
spite some presumed remaining instability in the final models due to multicollinearity [119,120].
Nevertheless, statistical inference supports the conclusions regarding the variable impor-
tance drawn from the correlation analysis. All of the geophysical measurements and the
DEM were excluded from all µ models or shrunk towards zero. In case of the DEM, the
exclusion can be attributed to the level research site which only has an elevation range of
about 1 m within it’s 200× 200 m extent. The estimation of the contribution of soil traits to
the vegetation stress signal would require the integration of actual soil traits, such as soil
moisture, porosity or pH. Keeping the strong collinearity among certain vegetation indices
in mind, the notion of “irrelevant” proxy variables should be considered with caution [121].
If there is a physiological cause for collinearity among predictors, the variables in question
have to be considered as relevant. This is the case for the pigment indices ChlREopt and
CarREopt (see Figure 6). We assume a close correlation of Cab and Cxc as long as plants are
not severely stressed [122], even though CarREopt is the vegetation index that shows the
closest agreement with ζ values. PRI512 is the predictor variable with the smallest VIF value
in multicollinearity testing and it is an important variable in the full µ model. However,
it was quite irrelevant in the subset models. This demonstrates that the PRI512 tracked
“long-term” stress responses of the grassland site, but it is less related to the within-image
stress gradient. We reason that the PRI512 contributed most unique information to the
estimation procedure. The importance of this spectral trait constitutes a possible link
between the latent variable model and photosynthesis.

4.3. Potential of SiVM for Vegetation Monitoring

Even though there is a strong correlation between ζ and the carotenoid-related vari-
ables CarREopt and PRI512, additional campaigns to collect imagery of severely stressed
grassland would be required to confirm the results. This illustrates a restriction of SiVM-
based stress detection that does not result in a standardised, quantitative measurement
of stress, but generates a qualitative classification of stress levels occuring in the input
datasets. Hyperspectral reference datasets of extreme environmental conditions can be
included in an analysis to address this issue.

The present work also highlights several advantages of the factorisation-based stress
detection approach. The integrated treatment of background, shade, and other effects that
can adversely affect an analysis makes different preprocessing steps obsolete. Because SiVM
is a method of unsupervised learning, it does not require previous knowledge or labeled
data to perform clustering. This property makes it a valuable tool for areas where ground
truth is not available, location of spectral features of interest is unknown, or in the case of
rapid diagnosis of stress levels of vegetation, irrespective of the actual driver. Given that all
calculated archetypes and their combinations are restricted to the unit interval, results from
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the factorisation are easily and intuitively interpretable. Although not investigated in this
study, SiVM has proven to be successful in pre-symptomatic stress detection, being able to
track temporal stress development several days earlier when compared to visual analysis
or vegetation indices [26]. The method has also been expanded to include Gaussian process
priors of arbitrary covariates, such as plant species or location for prediction tasks [61].

The demonstrated approach to latent variable stress detection did not result in a
distinction of different stressors. The fact that drought and waterlogging both lead to an
increased production of reactive oxygen species and changes in carotenoid content [123]
is one example for the difficulties in stress agent distinction. The reflectance changes in
the visible wavelengths are known to be similar for different stress sources [65]. Stress
responses are species dependent, but the 0.4 m spatial resolution in this analysis did not
allow for detecting species responses. Thus, we inferred the functional stress response of a
grassland ecosystem. The quality and specificity of stress classifications could be improved
by incorporating SWIR and TIR wavelengths into the factorisation [26]. Both of the spectral
regions contain essential information regarding the vegetation health status related to
heat and drought stress, and they have been employed in many applications [22,124,125].
Nevertheless, the visible spectrum is a reliable indicator of plant stress in general. The
use of visible spectrum sensors is cheaper and, therefore, more widespread, which makes
the methodology presented in this study suitable for low-cost monitoring networks [126],
whether in precision agriculture or scientific applications [127].

The generalisation of the methodology has to be further tested. As a first step, SiVM
should be applied to imagery from different ecosystems to evaluate the robustness of
the resulting stress index and investigate necessary adjustments of the approach. While
the method has performed satisfactory using data from a rather homogeneous canopy of
simple-structured grass leaves, its application to a structurally complex canopy remains to
be evaluated. Extrapolation of derived stress indices to larger scales has to be evaluated
in detail. Different applications of SiVM for stress detection at the leaf scale have already
been proven successful [26,61,128]. In this study, we could show that the methodology
can be transferred to the ecosystem scale. Hence, an upscaling effort to the regional or
continental scale based on spaceborne data seems to be worthwhile, when considering the
relevance of satellites for monitoring tasks and the increasing ability of next-gen spaceborne
spectrometers, like DESIS [129], PRISMA [130], or the upcoming EnMAP [131].

5. Conclusions

The main achievement of this study is the successful application of SiVM for an
unsupervised classification of grassland drought stress at the ecosystem scale. The stress-
related vegetation indices included in the analysis were strongly correlated with the
stress classification computed with SiVM (four out of nine with |r| > 0.8, none with
|r| < 0.75, p < 0.001). Previously, this method has been applied at a close range above
individual plants and a homogeneous corn canopy [26,61]. The findings of this study
suggest that SiVM is robust towards mixed pixel effects, and it can be transferred to field
scale applications and beyond. This property, the capability for pre-symptomatic stress
detection, and the easily interpretable results make SiVM a valuable tool for precision
agriculture applications that use remote sensing data from airborne sensors. Large-scale
stress detection is also highly valuable for reducing uncertainties in land surface and
ecosystem models. Physiological stress indices can be integrated to improve the estimation
of the impact of stress on carbon and water fluxes of ecosystems [132,133].

We performed different statistical analyses to assess the quality of SiVM-based stress
classification using a set of evaluation variables that included spectral indices and geophys-
ical measurements. In the correlation analysis, CarREopt had the highest correlation with
computed vegetation stress levels (r = 0.89, p < 0.001). This proxy for carotenoid content
indicates higher carotenoid levels in healthier vegetation. In contrast to our expectations,
CarREopt values in the 2019 dataset decreased, which suggested a Cxc reduction. This shows
that neither prolonged water stress during 2018 nor the re-emering drought in spring 2019
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had a lasting or severe impact on vegetation health at DE-GsB. Immediately after an
intensive heat and drought event, like the summer 2018 drought, increased Cxc values
would most likely have been observable. However, a validation with direct vegetation
measurements would have generated more reliable results.

Statistical inference with boosted beta regression revealed that PRI512, the second
carotenoid-related index, is closely related to the unsupervised stress classification in
the interannual full model and it shows comparably low multicollinearity with other
evaluation variables. Likewise, covariation between PRI and carbon uptake of plants has
been found in a number of studies [74,80,134]. These results suggest that a relationship
between the SiVM-based stress classification and photosynthetic efficiency exists. Thus,
the methodology could possibly be used for the estimation of carbon fluxes based on
hyperspectral data. Further research on the issue would require local hyperspectral data of
high temporal resolution in combination with eddy covariance measurements to enable
the calibration of remotely sensed flux estimates [25]. Local scale optical sensors are less
dependent on favorable atmospheric conditions than satellites and enable continuous
measurements. If carbon flux estimation with SiVM proves to be practical at the local scale,
transfer to satellite scale could be considered for large-scale productivity monitoring.

Plant stress that is caused by water scarcity or water logging cannot be distinguished
so far. This limitation could be improved by introducing more categories into the archetype
classification. However, a more precise distinction requires in-depth knowledge regarding
the subtle disparities of reflectance spectra due to different stress agents for different species
and landscape types. A database of labeled spectral fingerprints of stress effects could be
used to achieve a more differentiated classification with high accuracy using supervised
learning techniques. Beyond that, labeling data within already operative “fingerprinting”
efforts, like the Spectranomics database [135], would produce synergies that could foster
an easier usage of hyperspectral data for different monitoring tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

Cab Chlorophyll content
Cxc Carotenoid content
CarRE opt Optimised carotenoid red edge index
ChlRE opt Optimised chlorophyll red edge index
CRS Coordinate reference system
CTR2 Carter index 2
DE-GsB TERENO/ICOS site “Am Grossen Bruch”
DEM Digital elevation model
DESIS DLR Earth Sensing Imaging System Spectrometers
ECa Apparent electrical conductivity
EMI Electromagnetic induction
EnMAP Environmental Mapping and Analysis Program
FM Full model
GAM Generalised additive model
GAMLSS Generalised additive models for location, scale and shape
GR Gamma ray
ICOS Integrated Carbon Observation System Research Infrastructure
LAI Leaf area index
LUE Light use efficiency
MCARI2 Modified chlorophyll absorption ratio index 2
MSAVI2 Modified soil-adjusted vegetation index 2
NDVI Normalised difference vegetation index
NIR Near-infrared
PRI Photochemical reflectance index
PRISMA PRecursore IperSpettrale della Missione Applicativa
RENDVI Red edge normalised difference vegetation index
RWC Relative water content
SiVM Simplex volume maximisation
SPEI Standardised precipitation-evapotranspiration index
SWC Soil water content
SWIR Short-wavelength infrared
TDR Time-domain reflectometer
TERENO TERrestrial ENvironmental Observatories
TIR Thermal infrared
UAV Unmanned aerial vehicle
VIF Variance inflation factor
VNIR Visible and near-infrared
WBI Water band index
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