Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Satellite Data
2.1.2. Re-Analysis Data
2.1.3. Sounding Data
2.2. Channel Selection for HIRAS Based on Principal Component Cumulative Influence Coefficient Algorithm
2.3. Cloud-Screening
2.4. BP NN-Based Inversion of Atmospheric Temperature and Humidity Algorithm
2.4.1. Construction of BP Neural Network
2.4.2. Network Topology
2.4.3. Transfer Functions and Training Algorithms
3. Retrieval Performance as Compared to ERA5
3.1. Inversion Results of Temperature and RH over Land
3.1.1. Validation of NNs with ERA5
3.1.2. RMSE and ME Variation with Height
3.2. Inversion Results of Temperature and RH over Ocean
3.2.1. Validation of NNs with ERA5
3.2.2. RMSE and ME Variation with Height
4. Comparison of Retrieved Results to the Radiosonde Observation
5. Comparison between HIRAS Retrievals and AIRS Retrievals
5.1. Temperature
5.2. Relative Humidity
6. Discussion
- The algorithm parameter settings have affected our results, such as the number of hidden layer nodes. Even though we have done a lot of experiments, these parameters may not necessarily conform to the optimal parameter scheme.
- Due to the topographic heterogeneity and elevation difference over the Arctic area, the performance of NNs established on land is slightly worse that on ocean.
- The performance of the established NNs is also affected by the accuracy of the L2 cloud products in the polar region. Cloud-clearing is much more difficult on land than ocean, so there may be more samples polluted by cloud on land than ocean.
- It is worth noting that the accuracy of NNs in the near-surface layer than in other layers. This may be due to multiple energy exchanges between the lower atmosphere and the surface. The lower layer atmosphere will be affected by the difference in surface temperature, surface pressure and so on.
- As the fact that the ERA5 from ECMWF and the RAOBs exist certain deviation [48], and this deviation was also brought into retrievals, which resulting that RMSE of NN retrievals is larger than that of ERA5, when compared with RAOBs on land.
7. Conclusions
- The performance of temperature retrieval in warm season is better than that in cold season, and the accuracy of temperature retrievalon ocean is higher than that on land. Compared with ERA5 on land, RMSE of temperature from 42 vertical layers is 1.12 K in warm season, and 1.76 K in cold season. Compared with ERA5 on ocean, the RMSE of temperature retrieved on warm and cold season is 1.06 K and 1.38 K, respectively. RMSE of retrieved RH profiles during the whole period is between 10% and 15% both on land and ocean.
- The influence of surface parameters and the existence of near-surface inversion layers in the Arctic region make the accuracy in the near-surface layer unsatisfactory. Compares with ERA5 on land, RMSE of warm season at about 1000 hPa is 2.5 K, and the RMSE in cold season can reach 3 K.
- RMSE of retrieved profiles from NNs on land compared with collocated RAOBs is slightly higher. While direct comparison with different data sets is not available, but the errors of retrieval profiles still vary within a reasonable range.
- NNs can achieve comparable performance in upper troposphere, and better performance below 900 hPa when compared with AIRS L2 products. This advantage is even more pronounced in the stratosphere.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Zhong, W.; Diao, Y.; Cao, Y. The Rapidly Changing Arctic and Its Impact on Global Climate. J. Ocean. Univ. China 2019, 18, 537–541. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Ghatak, D.; Frei, A.; Gong, G.; Stroeve, J.; Robinson, D. On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J. Geophys. Res. Atmos. 2010, 115, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lei, G. Uncertainty of Temperature Variability in the Arctic of the 20th Century. J. Subtrop. Resour. Environ. 2012, 7, 34–39. [Google Scholar]
- Wu, B. Progresses in the Impact Study of Arctic Sea Ice Loss on Wintertime Weather and Climate Variability over East Asia and Key Academic Disputes. Chin. J. Atmos. Sci. 2018, 42, 786–805. [Google Scholar] [CrossRef]
- Hu, X.; Cai, M.; Yang, S.; Sejas, S.A. Air temperature feedback and its contribution to global warming. Sci. China Earth Sci. 2018, 61, 1491–1509. [Google Scholar] [CrossRef]
- Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S. Tropospheric Water Vapor and Climate Sensitivity. J. Atmos. Sci. 1999, 56, 1649–1658. [Google Scholar] [CrossRef]
- Zhao, T.; Tu, K.; Yan, Z. Advances of Atmospheric Water Vapor Change and Its Feedback Effect. Progress. Inquisitiones DE Mutat. Clim. 2013, 9, 79–88. [Google Scholar] [CrossRef]
- Li, H.; Shu, R.; Xue, Y. Pushbroom Hyperspectral Imager And Its Potential Application To Oceanographic Remote Sensing. J. Infrared Millim. Waves 2002, 21, 429–433. [Google Scholar]
- Shukla, A.; Kot, R. An Overview of Hyperspectral Remote Sensing and its applications in various Disciplines. IRA Int. J. Appl. Sci. 2016, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Staenz, K.; Held, A. Summary of current and future terrestrial civilian hyperspectralspaceborne systems. Int. Geosci. Remote Sens. Symp. 2012, 123–126. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, T.; Yan, T.; Chen, Z. Overview of Hyperspectral Remote Sensing Technology. Spacecr. Recover. Sens. 2018, 39, 104–114. [Google Scholar] [CrossRef]
- Wang, C.; Du, M.; Xie, X.; Li, X.; Li, B. Atmospheric Temperature and Hunidity Profiles Physical Rertieval Algorithm for Satellite-Borne Microwave Sensors. Aerosp. Shang Hai 2018, 35, 73–80. [Google Scholar]
- Guan, Y.; Ren, J.; Bao, Y.; Lu, Q.; Liu, H.; Xiao, X. Research of the infrared high spectral( IASI) satellite remote sensing at- mospheric temperature and humidity profiles based on the one- dimensional variational algorithm. Trans. Atmos. Sci. 2019, 42, 602–611. [Google Scholar]
- Guan, L. Retrieving Atmospheric Profiles from MODIS/AIRS Observations I.Eigenvector Regression Algorithms. J. Nanjing Inst. Meteorol. 2006, 29, 756–761. [Google Scholar]
- Jiang, D.; Dong, C.; Wei, W. Preliminary Study on the Capacity of High Spectral Resolution Infrared Atmospheric Sounding Instrument Using AIRS Measurements. J. Remote Sens. 2006, 10, 586–592. [Google Scholar]
- Liu, H.; Dong, C.; Zhang, W.; Zhang, P. Retrieval of clear-air atmospheric temperature profiles using AIRS observations. Acta Meteorol. Sin. 2008, 66, 513–519. [Google Scholar]
- Bao, Y.; Cai, X.; Qian, C.; Min, J.; Lu, Q.; Zuo, Q. 0–10 Km Temperature and Humidity Profiles Retrieval From Ground-Based Microwave Radiometer. J. Trop. Meteorol. 2018, 24, 223–252. [Google Scholar]
- Blackwell, W.J. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2535–2546. [Google Scholar] [CrossRef]
- Cai, X.; Bao, Y.; Petropoulos, G.P.; Lu, F.; Lu, Q.; Zhu, L.; Wu, Y. Temperature and humidity profile retrieval from FY4-GIIRS hyperspectral data using artificial neural networks. Remote Sens. 2020, 12, 1872. [Google Scholar] [CrossRef]
- Guan, L.; Liu, Y.; Zhang, X. Application of Artificial Neural Network Algorithm in Retrieving Atmospheric Temperature Profiles from Hyperspectral Infrared Data. Trans. Atmos. Sci. 2010, 33, 341–346. [Google Scholar]
- Lerner, J.A.; Weisz, E.; Kirchengast, G. Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI ) measurements. J. Geophys. Res. Atmos. 2002, 107, ACH-4. [Google Scholar] [CrossRef] [Green Version]
- Milstein, A.B.; Blackwell, W.J. Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS. J. Geophys. Res. Atmos. 2016, 121, 1414–1430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guan, L.; Wang, Z.; Han, J. Retrieval Atmospheric Temperature Profiles Using Artificial Neural Network Approach. Meteorol. Mon. 2009, 35, 137–142. [Google Scholar]
- Huang, X.; Zhang, X.; Leng, L.; Li, F.; Fan, Y. Study on retrieval method with MonoRTM for microwave radiometer measurements. J. Meteorol. Sci. 2013, 33, 138–145. [Google Scholar]
- Deng, K.A.K.; Lamine, S.; Pavlides, A.; Petropoulos, G.P.; Srivastava, P.K.; Bao, Y.; Hristopulos, D.; Anagnostopoulos, V. Operational Soil Moisture from ASCAT in Support of Water Resources Management. Remote Sens. 2019, 11, 579. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.A.K.; Lamine, S.; Pavlides, A.; Petropoulos, G.P.; Bao, Y.; Srivastava, P.K.; Guan, Y. Large scale operational soil moisture mapping from passive MW radiometry: SMOS product evaluation in Europe & USA. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 206–217. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, P.; Lu, N.; Yang, Z.; Shi, J.; Dong, C. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth 2012, 5, 251–265. [Google Scholar] [CrossRef]
- Wu, C.; Qi, C.; Hu, X.; Gu, M.; Yang, T.; Xu, H.; Lee, L.; Yang, Z.; Zhang, P. FY-3D HIRAS Radiometric Calibration and Accuracy Assessment. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3965–3976. [Google Scholar] [CrossRef]
- Divakarla, M.G.; Barnet, C.D.; Goldberg, M.D.; McMillin, L.M.; Maddy, E.; Wolf, W.; Zhou, L.; Liu, X. Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res. Atmos. 2006, 111, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, G.; Zhang, H.; Huang, J.; Chen, J.; Wu, L. Experiment on hyperspectral atmospheric infrared sounder channel selection based on the cumulative effect coefficient of principal component. Trans. Atmos. Sci. 2011, 34, 36–42. [Google Scholar]
- Liu, L.; Li, Y. The application and Research Advances of RTTOV Fast Radiative Transfer Mode. J. Anhui Agri. Sci. 2016, 44, 230–232. [Google Scholar] [CrossRef]
- Collard, A.D. Selection of IASI channels for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2007, 133, 177–1991. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Cho, C.; Staelin, D.H. Cloud clearing of Atmospheric Infrared Sounder hyperspectral infrared radiances using stochastic methods. J. Geophys. Res. Atmos. 2006, 111, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guan, L.; Wang, Z. Objective Determination of AIRS Cloud Mask Using Co-located MODIS Cloud Mask. Sci. Meteorol. 2007, 57, 516–521. [Google Scholar]
- Lu, Q.; Zhou, F.; Qi, C.; Hu, X.; Xu, H.; Wu, C. Spectral performance evaluation of high-spectral resolution infrared atmospheric sounder onboard FY-3D. OptisPrecis. Eng. 2019, 27, 2105–2115. [Google Scholar] [CrossRef]
- Wang, L.; Tremblay, D.; Zhang, B.; Han, Y. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with Cross-track Infrared Sounder. Remote Sens. 2016, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. IEEE IJCNN 1989, 593–605. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M. Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Rev. Geophys. 2007, 45, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Cao, S.; Qu, Y. A Neural network application to retrieval of atmosoheric temperature profile from high speatral resolution infrared measurements. J. Trop. Meteorol. 2010, 26, 819–824. [Google Scholar]
- Sai Gowtam, V.; Tulasi Ram, S. An Artificial Neural Network-Based Ionospheric Model to Predict NmF2 and hmF2 Using Long-Term Data Set of FORMOSAT-3/COSMIC Radio Occultation Observations: Preliminary Results. J. Geophys. Res. Sp. Phys. 2017, 122, 743. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, F.; Yang, Z.; Feng, X. Prediction of Solar Wind Speed at 1 AU Using an Artificial Neural Network. Sp. Weather 2018, 16, 1227–1244. [Google Scholar] [CrossRef]
- Zheng, G.; Yang, J.; Li, X.; Zhou, L.; Ren, L.; Chen, P.; Zhang, H.; Lou, X. Using artificial neural network ensembles with crogging resampling technique to retrieve sea surface temperature from HY-2A scanning microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 985–1000. [Google Scholar] [CrossRef]
- Jiao, B.; Ye, M. Determination of Hidden Unit Number in a BP Neural Network. J. O Shanghai Dianji Univ. 2013, 16, 113–117. [Google Scholar]
- Cheng, G.; Gao, Z.; Zheng, Y.; Dai, C.; Zhou, M. A Study on Low-level Jets and Temperature Inversion over the Arctic Ocean by using SHEBA Data. Clim. Environ. Res. 2013, 18, 23–31. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, B.; Ban, X.X. Research progress of retrieving atmospheric humidity profiles from AIRS data. Adv. Earth Sci. 2013, 28, 890–896. [Google Scholar]
- Keernik, H.; Jakobson, E. Evaluating reanalyses performance in the Baltic Sea region by using assimilated radiosonde data. Int. J. Climatol. 2018, 38, 1820–1832. [Google Scholar] [CrossRef]
Band Name | Spectral Range (cm−1) | Spectral Resolution (cm−1) | Sensitivity(NE∆T@250K) |
---|---|---|---|
Long Wave | 650–1136 (15.38–8.8 μm) | 0.625 | 0.15–0.4 K |
Medium Wave 1 | 1210–1750 (8.26–5.71 μm) | 1.25 | 0.1–0.7 K |
Medium Wave 2 | 2155–2550 (4.64–3.92 μm) | 2.5 | 0.3–1.2 K |
Season | Land | Ocean |
---|---|---|
warm | 27,395 | 30,283 |
cold | 16,648 | 23,607 |
Season | T Number | RH Number |
---|---|---|
warm | 944 | 938 |
cold | 353 | 356 |
Sta | Lat | Lon | Sta | Lat | Lon | Sta | Lat | Lon |
---|---|---|---|---|---|---|---|---|
70,200 | 64.5 | −165.43 | 71,082 | 82.5 | −62.35 | 2365 | 62.53 | 17.45 |
70,133 | 66.86 | −162.63 | 4220 | 68.7 | −52.85 | 1028 | 74.5 | 19 |
70,219 | 60.78 | −161.84 | 4360 | 65.6 | −37.63 | 2185 | 65.55 | 22.13 |
70,026 | 71.28 | −156.79 | 4018 | 63.96 | −22.6 | 22,217 | 67.15 | 32.35 |
70,231 | 62.96 | −155.61 | 4339 | 70.48 | −21.95 | 22,008 | 68.1 | 33.11 |
70,273 | 61.16 | −150.01 | 4320 | 76.76 | −18.66 | 22,820 | 61.81 | 34.26 |
70,261 | 64.81 | −147.88 | 4089 | 65.28 | −14.4 | 22,522 | 64.95 | 34.65 |
71,957 | 68.31 | −133.53 | 1001 | 70.93 | −8.66 | 22,845 | 61.5 | 38.93 |
71,043 | 65.28 | −126.75 | 6011 | 62.01 | −6.76 | 22,543 | 64.62 | 40.51 |
71,934 | 69.03 | −111.93 | 3005 | 60.13 | −1.18 | 22,271 | 67.88 | 44.13 |
71,925 | 69.13 | −105.06 | 1241 | 63.71 | 9.61 | 23,802 | 61.68 | 50.78 |
71,924 | 74.7 | −94.97 | 1004 | 78.91 | 11.93 | 20,744 | 72.36 | 52.7 |
71,917 | 79.98 | −85.93 | 1010 | 69.3 | 16.13 | 23,205 | 67.63 | 53.03 |
23,415 | 65.12 | 57.1 | 20,046 | 80.61 | 58.05 | 23,921 | 60.68 | 60.45 |
23,330 | 66.53 | 66.66 | 20,674 | 73.5 | 80.4 | 23,078 | 69.32 | 88.22 |
20,292 | 77.71 | 104.3 | 21,432 | 76 | 137.86 | 25,428 | 65.32 | 160.23 |
21,824 | 71.58 | 128.91 | 21,946 | 70.61 | 147.88 | 25,123 | 68.75 | 161.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Bao, Y.; Liu, J.; Liu, H.; Petropoulos, G.P.; Katsafados, P.; Zhu, L.; Cai, X. Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region. Remote Sens. 2021, 13, 1884. https://doi.org/10.3390/rs13101884
Hu J, Bao Y, Liu J, Liu H, Petropoulos GP, Katsafados P, Zhu L, Cai X. Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region. Remote Sensing. 2021; 13(10):1884. https://doi.org/10.3390/rs13101884
Chicago/Turabian StyleHu, Jingjing, Yansong Bao, Jian Liu, Hui Liu, George P. Petropoulos, Petros Katsafados, Liuhua Zhu, and Xi Cai. 2021. "Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region" Remote Sensing 13, no. 10: 1884. https://doi.org/10.3390/rs13101884
APA StyleHu, J., Bao, Y., Liu, J., Liu, H., Petropoulos, G. P., Katsafados, P., Zhu, L., & Cai, X. (2021). Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region. Remote Sensing, 13(10), 1884. https://doi.org/10.3390/rs13101884