A Prediction Model of Water In Situ Data Change under the Influence of Environmental Variables in Remote Sensing Validation
Abstract
:1. Introduction
2. Data and Preprocessing
2.1. Experimental Area and Instruments
2.2. Data Preprocessing
- (1)
- Firstly, the original data were screened to eliminate the invalid data caused by instrument calibration, damage, and maintenance, such as the data with Chl-a ≤0 and TSS equal to −9999. A total of 2166 effective measured data were collected after elimination.
- (2)
- Secondly, considering that some EVs (such as Sal, PC, FDOM, AWD, and AP) do not satisfy the normal distribution, we introduced the adjusted boxplot to eliminate the outliers, which take into account the medcouple (MC), a robust measure of skewness for a skewed distribution [35]. These outliers may be caused by other uncontrollable factors such as occlusion of floating objects or fishing boats passing by. After processing, a total of 1692 available Chl-a data were collected, accounting for 78.1% of the effective measured data. Because there are more outliers in TSS data during measurement, the available TSS data amounted to 1627, accounting for 75.1%. The available Chl-a data and TSS data both form the all-valid dataset. According to statistics, the range of Chl-a in all-valid dataset is between 0.46 μg/L and 8.19 μg/L, and the range of TSS is between 5.8 mg/L and 80.1 mg/L.
- (3)
- Finally, the data of sunny days were selected based on the photos taken by the waterbody spectrometer. A total of 403 Chl-a data and 382 TSS data were collected, forming the sunny-day dataset. According to statistics, Chl-a in the sunny-day dataset ranges from 0.62 μg/L to 6.15 μg/L, and TSS ranges from 16.3 mg/L to 80.0 mg/L.
3. Method
3.1. Correlation Analysis
3.2. Multi-Variables Modeling Method
3.3. Multi-Parameters Forecasting Model
3.4. Evaluation Index of Model Accuracy
3.5. Impact Factor Screening
4. Results
4.1. Correlation Analysis
4.1.1. Variable Correlation Analysis
4.1.2. Correlation Analysis Among EVs
4.1.3. Environment Variable Filtering
4.2. Modeling Results in All-Valid Dataset
4.2.1. Model Results of Chl-a
4.2.2. Modeling Results of TSS
4.3. Modeling Results in Sunny-Day Dataset
4.3.1. Environment Variable Filtering
4.3.2. Modeling Results
4.4. Model Prediction Results
5. Discussion
5.1. Environmental Variables Affecting Chl-a and TSS
5.1.1. Chl-a and Environmental Variables
5.1.2. TSS and Environmental Variables
5.2. Application of Multi-Parameter Forecasting Model in Validaiton
5.2.1. Predicting the Changes of Chl-a and TSS
5.2.2. An Example for Screening In Situ Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usali, N.; Ismail, M.H. Use of remote sensing and GIS in monitoring water quality. J. Sustain. Dev. 2010, 3, 228. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O.; Seutloali, K.; Adelabu, S.; Shoko, C. Water quality monitoring in sub-Saharan African lakes: A review of remote sensing applications. Afr. J. Aquat. Sci. 2015, 40, 1–7. [Google Scholar] [CrossRef]
- Peppa, M.; Vasilakos, C.; Kavroudakis, D. Eutrophication Monitoring for Lake Pamvotis, Greece, Using Sentinel-2 Data. ISPRS Int. J. Geo Inf. 2020, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hou, Y.; Yang, X. Sea Level Rise and Coastal Infrastructure || Coastal Disasters and Remote Sensing Monitoring Methods; IntechOpen: London, UK, 2018; Chapter 8. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhang, Y.; Moreno-Madrinan, M.J.; Li, Y.; Li, N. A semi-analytical model for estimating total suspended matter in highly turbid waters. Opt. Express 2018, 26, 34094–34112. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Wang, Y.; Ma, S.; Lv, T.; Zhou, X. A Phytoplankton Class-Specific Marine Primary Productivity Model Using MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5519–5528. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.M. Uncertainties and applications of satellite-derived coastal water quality products. Prog. Oceanogr. 2017, 159, 45–72. [Google Scholar] [CrossRef]
- Justice, C.; Belward, A.; Morisette, J.; Lewis, P.; Privette, J.; Baret, F. Developments in the ‘validation’ of satellite sensor products for the study of the land surface. Int. J. Remote Sens. 2000, 21, 3383–3390. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, J.; Li, Z.; Su, H.; Chen, S.; Tang, X. Principles and methods for the validation of quantitative remote sensing products. Sci. China Earth Sci. 2010, 53, 741–751. [Google Scholar] [CrossRef]
- Privette, J.L.; Morisette, J.T.; Justice, C.; Starr, D. EOS global land validation network. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; pp. 2587–2589. [Google Scholar]
- Baret, F.; Weiss, M.; Allard, D.; Garrigues, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, R.; Privette, J.; Morisette, J. VALERI: A network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sens. Environ. 2005, 76, 36–39. [Google Scholar]
- Guillevic, P.C.; Nickeson, J.; Roman, M.; Wang, Z.; Schaepman-Strub, G. Global Land Product Validation Protocols: An Initiative of the CEOS Working Group on Calibration and Validation to Evaluate Satellite-derived Essential Climate Variables. AGUFM 2016, 2016, B33J-01. [Google Scholar]
- Morisette, J.T.; Privette, J.L.; Justice, C.O. A framework for the validation of MODIS land products. Remote Sens. Environ. 2002, 83, 77–96. [Google Scholar] [CrossRef]
- Barr, A.; Black, A.; McCaughey, H.; Amiro, B.; Hogg, T.; Murayama, S.; Iwashita, H.; Kljun, N.; Morgenstern, K.; Griffis, T. The Boreal Ecosystem Research and Monitoring Sites: A Synthesis of Results, 1994–2003. AGUSM 2004, 2004, B22A-01. [Google Scholar]
- Avissar, R.; Silva Dias, P.L.; Silva Dias, M.A.; Nobre, C. The large-scale biosphere-atmosphere experiment in Amazonia (LBA): Insights and future research needs. J. Geophys. Res. Atmos. 2002, 107, LBA 54-51–LBA 54-56. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, M.; Wang, J.; Liu, Q.; Che, T.; Hu, Z.; Xiao, Q.; Liu, Q.; Su, P.; Chu, R. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design. Adv. Earth Sci. 2008, 23, 897–914. [Google Scholar]
- Li, X.; Liu, S.; Ma, M.; Xiao, Q.; Liu, Q.; Jin, R.; Che, T.; Wang, W.; Qi, Y.; Li, H. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Adv. Earth Sci. 2012, 27, 481–498. [Google Scholar]
- Hu, S.; Cao, W.; Wang, G.; Xu, Z.; Lin, J.; Zhao, W.; Yang, Y.; Zhou, W.; Sun, Z.; Yao, L. Comparison of MERIS, MODIS, SeaWiFS-derived particulate organic carbon, and in situ measurements in the South China Sea. Int. J. Remote Sens. 2016, 37, 1585–1600. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Yang, R.; Wen, J.; Zhang, J.; Cai, E.; Zhang, H. The combination of ground-sensing network and satellite remote sensing in Huailai county. IEEE Sens. J. 2016, 16, 3819–3826. [Google Scholar] [CrossRef]
- Dou, B.; Wen, J.; Li, X.; Liu, Q.; Peng, J.; Xiao, Q.; Zhang, Z.; Tang, Y.; Wu, X.; Lin, X. Wireless sensor network of typical land surface parameters and its preliminary applications for coarse-resolution remote sensing pixel. Int. J. Distrib. Sens. Netw. 2016, 12, 9639021. [Google Scholar] [CrossRef] [Green Version]
- Rodeghiero, M.; Cescatti, A. Spatial variability and optimal sampling strategy of soil respiration. For. Ecol. Manag. 2008, 255, 106–112. [Google Scholar] [CrossRef]
- Pujar, P.M.; Kenchannavar, H.H.; Kulkarni, U.P. Wireless Sensor Network based Water Monitoring Systems: A survey. In Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Bangalore, India, 21–23 July 2016. [Google Scholar]
- Kallio, K.; Koponen, S.; Ylöstalo, P.; Kervinen, M.; Pyhälahti, T.; Attila, J. Validation of MERIS spectral inversion processors using reflectance, IOP and water quality measurements in boreal lakes. Remote Sens. Environ. 2015, 157, 147–157. [Google Scholar] [CrossRef]
- Sharma, S.; Gray, D.K.; Read, J.S.; O’reilly, C.M.; Schneider, P.; Qudrat, A.; Gries, C.; Stefanoff, S.; Hampton, S.E.; Hook, S. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2015, 2, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Lei, S.; Xu, J.; Li, Y.; Lyu, H.; Liu, G.; Zheng, Z.; Xu, Y.; Du, C.; Zeng, S.; Wang, H. Temporal and spatial distribution of Kd (490) and its response to precipitation and wind in lake Hongze based on MODIS data. Ecol. Indic. 2020, 108, 105684. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Guo, M.; Tang, J. MODIS ocean color product validation around the Yellow Sea and East China Sea. J. Lake Sci. 2009, 21, 298–306. [Google Scholar]
- Zhao, W.; Wang, G.; Cao, W.; Cui, T.; Wang, G.; Ling, J.; Sun, L.; Zhou, W.; Sun, Z.; Xu, Z. Assessment of SeaWiFS, MODIS, and MERIS ocean colour products in the South China Sea. Int. J. Remote Sens. 2014, 35, 4252–4274. [Google Scholar] [CrossRef]
- Palmer, S.C.; Hunter, P.D.; Lankester, T.; Hubbard, S.; Spyrakos, E.; Tyler, A.N.; Presing, M.; Horváth, H.; Lamb, A.; Balzter, H. Validation of Envisat MERIS algorithms for chlorophyll retrieval in a large, turbid and optically-complex shallow lake. Remote Sens. Environ. 2015, 157, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Yang, W.; Matsushita, B.; Li, R.; Oyama, Y.; Fukushima, T. Remote estimation of Chlorophyll-a in inland waters by a NIR-Red-based algorithm: Validation in Asian lakes. Remote Sens. 2014, 6, 3492–3510. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Ren, J.; Li, Y.; Huang, C.; Liu, G.; Du, C.; Lyu, H. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Sci. Total Environ. 2016, 573, 39–54. [Google Scholar] [CrossRef]
- Cheng, C.; Wei, Y.; Lv, G.; Xu, N. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Environ. Monit. Assess. 2019, 191, 84. [Google Scholar] [CrossRef]
- Xia, R.; Li, Y.-M.; Wu, C.-Q.; Jin, X.; Wang, Y.-f. Spatial Distribution and Variation of Concentration of Suspended Solids in Taihu Lake based on HJ-1 Satellite Data. Sci. Geogr. Sin. 2011, 31, 197–203. [Google Scholar]
- Xu, Y.; Qin, B.; Zhu, G.; Zhang, Y.; Shi, K.; Li, Y.; Shi, Y.; Chen, L. High temporal resolution monitoring of suspended matter changes from GOCI measurements in Lake Taihu. Remote Sens. 2019, 11, 985. [Google Scholar] [CrossRef] [Green Version]
- Seo, S. A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2006. [Google Scholar]
- Senthilnathan, S. Usefulness of Correlation Analysis. SSRN Electron. J. 2019, 1–9. [Google Scholar] [CrossRef]
- Jones, M.P. Indicator and Stratification Methods for Missing Explanatory Variables in Multiple Linear ReGression. Pub. Am. Stat. Assoc. 1996, 91, 222–230. [Google Scholar] [CrossRef]
- Panda, S.; Amatya, D.M.; Jackson, R.; Sun, G.; Noormets, A. Automated geospatial models of varying complexities for pine forest evapotranspiration estimation with advanced data mining. Water 2018, 10, 1687. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhao, S.; Jiao, L.; Taylor, M.; Zhang, B.; Xu, G.; Hou, H. Estimation of PM2. 5 concentrations in China using a spatial back propagation neural network. Sci. Rep. 2019, 9, 1–10. [Google Scholar]
- Yang, L.; Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Zhang, X. A robust algorithm for estimating surface fractional vegetation cover from landsat data. Remote Sens. 2017, 9, 857. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Gong, Y.; Wang, Z. Accessible remote sensing data based reference evapotranspiration estimation modelling. Agric. Water Manag. 2018, 210, 59–69. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Özerdem, M.S.; Acar, E.; Ekinci, R. Soil moisture estimation over vegetated agricultural areas: Tigris Basin, Turkey from Radarsat-2 data by polarimetric decomposition models and a generalized regression neural network. Remote Sens. 2017, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 52, 209–223. [Google Scholar] [CrossRef]
- Li, T.; Shen, H.; Zeng, C.; Yuan, Q.; Zhang, L. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmos. Environ. 2017, 152, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Al-Mahasneh, A.J.; Anavatti, S.G.; Garratt, M.A. Review of Applications of Generalized Regression Neural Networks in Identification and Control of Dynamic Systems. arXiv 2018, arXiv:1805.11236. [Google Scholar]
- Chen, M.; Fan, M.; Liu, R.; Wang, X.; Yuan, X.; Zhu, H. The dynamics of temperature and light on the growth of phytoplankton. J. Theor. Biol. 2015, 385, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Wang, S.H.; Jiang, X.; Huang, X.F.; Zhao, L. Fluorescence Spectral Characteristics of Fluorescent Dissolved Organic Matter (FDOM) in the Surface Sediments from Lihu Lake. Huanjing Kexue 2017, 38, 70–77. [Google Scholar]
- Wang, J.; Shi, R.; Gao, W. Retrieval of phycocyanin concentration in the eutrophic Taihu Lake. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability XI, San Diego, CA, USA, 8 October 2014; p. 92210Z. [Google Scholar]
- Wu, Q.; Xia, X.; Li, X.; Mou, X. Impacts of meteorological variations on urban lake water quality: A sensitivity analysis for 12 urban lakes with different trophic states. Aquat. Sci. 2014, 76, 339–351. [Google Scholar] [CrossRef]
- Chiswell, S.M.; Zeldis, J.R.; Hadfield, M.G.; Pinkerton, M.H. Wind-driven upwelling and surface chlorophyll blooms in Greater Cook Strait. N. Z. J. Mar. Freshw. Res. 2017, 51, 465–489. [Google Scholar] [CrossRef]
- Tammeorg, O.; Niemistö, J.; Möls, T.; Laugaste, R.; Panksep, K.; Kangur, K. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquat. Sci. 2013, 75, 559–570. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Yu, M.-L.; Hong, G.-X.; Zhu, G.-W.; Quan, Q.-M.; Xu, H.; Zhu, M.-Y.; Ding, W.-H.; Li, W.; Wu, T.-F. Wind Field Influences on the Spatial Distribution of Cyanobacterial Blooms and Nutrients in Meiliang Bay of Lake Taihu, China. Huanjing Kexue 2019, 40, 3519. [Google Scholar]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Company, H. Hach Water Analysis Handbook; Hach Company: Loveland, CO, USA, 1992. [Google Scholar]
- Shuhaimi-Othman, M.; Lim, E.C.; Mushrifah, I. Water quality changes in Chini lake, Pahang, west Malaysia. Environ. Monit. Assess. 2007, 131, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, G. Inputs of humic fluorescent dissolved organic matter via submarine groundwater discharge to coastal waters off a volcanic island (Jeju, Korea). Sci. Rep. 2017, 7, 7921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randolph, K.; Wilson, J.; Tedesco, L.; Li, L.; Pascual, D.L.; Soyeux, E. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens. Environ. 2008, 112, 4009–4019. [Google Scholar] [CrossRef]
- Xu, X.; Tao, R.; Zhao, Q.; Wu, T. Wave characteristics and sensitivity analysis of the wind field in a large shallow lake- Lake Taihu. J. Lake Sci. 2013, 25, 55–64. [Google Scholar]
- Wang, W.; Xiao, W.; Cao, C.; Gao, Z.; Hu, Z.; Liu, S.; Shen, S.; Wang, L.; Xiao, Q.; Xu, J. Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. J. Hydrol. 2014, 511, 811–824. [Google Scholar] [CrossRef]
of Chl-a and others | WT | SpC | Cond | Sal | PC | FDOM |
0.49 | −0.39 | 0.48 | −0.34 | 0.08 | −0.25 | |
TSS | AWD | AWS | AT | AH | AP | |
0.08 | −0.10 | 0.33 | 0.47 | −0.08 | −0.43 | |
of TSS and others | WT | SpC | Cond | Sal | Chl-a | PC |
−0.25 | −0.01 | −0.27 | −0.03 | 0.09 | 0.08 | |
FDOM | AWD | AWS | AT | AH | AP | |
−0.29 | 0.25 | 0.37 | −0.25 | 0.06 | 0.14 |
WT | SpC | Cond | Sal | FDOM | AWD | AWS | AT | AP | |
---|---|---|---|---|---|---|---|---|---|
WT | 1.00 | ||||||||
SpC | −0.32 | 1.00 | |||||||
Cond | 0.90 | −0.31 | 1.00 | ||||||
Sal | −0.55 | 0.98 | −0.18 | 1.00 | |||||
FDOM | −0.18 | 0.08 | −0.16 | 0.09 | 1.00 | ||||
AWD | −0.12 | 0.13 | −0.08 | 0.10 | −0.06 | 1.00 | |||
AWS | 0.11 | 0.07 | 0.03 | 0.01 | −0.17 | −0.02 | 1.00 | ||
AT | 0.96 | −0.40 | 0.89 | −0.44 | −0.16 | −0.14 | 0.07 | 1.00 | |
AP | −0.33 | 0.24 | −0.32 | 0.32 | 0.33 | 0.11 | −0.11 | −0.25 | 1.00 |
Method | Model Expression | Accuracy | RMSE | AE | |
---|---|---|---|---|---|
MLR | Train (12,653) | 0.78 | 0.48 | 17.2% | |
Test (2460) | 0.72 | 0.63 | 18.9% | ||
BPNN | Train (12,653) | 0.88 | 0.36 | 13.2% | |
Test (2460) | 0.81 | 0.54 | 15.6% | ||
GRNN | Train (12,653) | 0.98 | 0.18 | 8.2% | |
Test (2460) | 0.85 | 0.41 | 11.4% |
Method | Model Expression | Accuracy | RMSE | AE | |
---|---|---|---|---|---|
MLR | Train (10,078) | 0.88 | 7.82 | 17.2% | |
Test (1865) | 0.86 | 8.67 | 17.3% | ||
BPNN | Train (10,078) | 0.93 | 6.52 | 14.4% | |
Test (1865) | 0.89 | 6.86 | 14.6% | ||
GRNN | Train (10,078) | 0.96 | 4.27 | 8.9% | |
Test (1865) | 0.90 | 6.20 | 11.3% |
of Chl-a and others | WT | SpC | Cond | Sal | PC | FDOM |
0.30 | −0.07 | 0.13 | −0.09 | 0.44 | −0.19 | |
TSS | AWD | AWS | AT | AH | AP | |
0.25 | −0.15 | 0.37 | 0.31 | 0.16 | −0.33 | |
of TSS and others | WT | SpC | Cond | Sal | Chl-a | PC |
−0.26 | −0.08 | −0.21 | −0.04 | 0.24 | 0.51 | |
FDOM | AWD | AWS | AT | AH | AP | |
−0.32 | −0.07 | 0.38 | −0.31 | −0.14 | 0.17 |
WT | Cond | AWS | AT | AP | |
---|---|---|---|---|---|
WT | 1.00 | ||||
Cond | 0.63 | 1.00 | |||
AWS | 0.23 | 0.06 | 1.00 | ||
AT | 0.86 | 0.24 | 0.20 | 1.00 | |
AP | −0.29 | −0.26 | −0.28 | −0.24 | 1.00 |
Parameter | Chl-a | TSS | Chl-a | TSS | Chl-a | TSS | Chl-a | TSS | Chl-a | TSS | |
---|---|---|---|---|---|---|---|---|---|---|---|
All-valid | Num. | 5354 | 4217 | 4141 | 3233 | 2967 | 2382 | 1849 | 1460 | 802 | 651 |
R2 | 0.94 | 0.95 | 0.93 | 0.94 | 0.90 | 0.92 | 0.87 | 0.86 | 0.85 | 0.85 | |
RMSE | 0.23 | 4.61 | 0.29 | 4.97 | 0.31 | 5.56 | 0.34 | 5.82 | 0.40 | 6.01 | |
AE | 7.4% | 8.2% | 9.3% | 9.1% | 9.9% | 10.4% | 10.3% | 11.5% | 11.9% | 12.3% | |
Sunny-day | Num. | 1249 | 1133 | 965 | 894 | 675 | 657 | 417 | 394 | 193 | 168 |
R2 | 0.97 | 0.95 | 0.96 | 0.82 | 0.93 | 0.90 | 0.89 | 0.89 | 0.88 | 0.86 | |
RMSE | 0.20 | 4.28 | 0.22 | 4.69 | 0.26 | 4.87 | 0.29 | 5.75 | 0.30 | 5.96 | |
AE | 5.9% | 6.3% | 7.2% | 7.1% | 8.1% | 7.7% | 8.5% | 8.3% | 9.1% | 8.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; Tao, Z.; Zhou, X.; Lv, T.; Wang, J.; Li, R. A Prediction Model of Water In Situ Data Change under the Influence of Environmental Variables in Remote Sensing Validation. Remote Sens. 2021, 13, 70. https://doi.org/10.3390/rs13010070
Xie F, Tao Z, Zhou X, Lv T, Wang J, Li R. A Prediction Model of Water In Situ Data Change under the Influence of Environmental Variables in Remote Sensing Validation. Remote Sensing. 2021; 13(1):70. https://doi.org/10.3390/rs13010070
Chicago/Turabian StyleXie, Futai, Zui Tao, Xiang Zhou, Tingting Lv, Jin Wang, and Ruoxi Li. 2021. "A Prediction Model of Water In Situ Data Change under the Influence of Environmental Variables in Remote Sensing Validation" Remote Sensing 13, no. 1: 70. https://doi.org/10.3390/rs13010070
APA StyleXie, F., Tao, Z., Zhou, X., Lv, T., Wang, J., & Li, R. (2021). A Prediction Model of Water In Situ Data Change under the Influence of Environmental Variables in Remote Sensing Validation. Remote Sensing, 13(1), 70. https://doi.org/10.3390/rs13010070