Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application
Abstract
:1. Introduction
Historical and Geological Setting
2. Materials and Methods
2.1. IRT Surveys
2.2. DP-UAV Survey and Surface Runoff Modelling
2.3. Geotechnical and Mineralogical Laboratory Analysis
3. Results
3.1. Local Stratigraphy, Structural Setting and Slope Instabilities
3.2. Geotechnical and Mineralogical Analysis
3.3. Microclimate Data Analysis
3.4. Remote Sensing Analysis
3.4.1. IRT
3.4.2. UAV-DP
3.4.3. RS Data Integration and Field Validation
4. Discussion
4.1. Instability Processes and Weathering Problems in Tuff Slopes
4.2. Contribution of RS Techniques for Detection of Criticalities in Vardzia
4.3. Risk Mitigation Strategy in Vardzia
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Canuti, P.; Margottini, C.; Fanti, R.; Bromhead, E.N. Cultural heritage and landslides: Research for risk prevention and conservation. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 401–433. [Google Scholar]
- Wang, J.J. Flood risk maps to cultural heritage: Measures and process. J. Cult. Herit. 2015, 16, 210–220. [Google Scholar]
- Ciampalini, A.; Frodella, W.; Margottini, C.; Casagli, N. Rapid assessment of geo-hydrological hazards in Antananarivo (Madagascar) historical centre for damage prevention. Geomat. Nat. Hazards Risk 2019, 10, 1102–1124. [Google Scholar]
- Margottini, C.; Spizzichino, D. How Geology Shapes Human Settlements. In Reconnecting the City: The Historic Urban Landscape Approach and the Future of Urban Heritage; Bandarin, F., van Oers, R., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2014; pp. 47–84. [Google Scholar]
- Margottini, C.; Gigli, G.; Ruther, H.; Spizzichino, D. Advances in sustainable conservation practices in rupestrian settlements inscribed in the UNESCO’s World Herit-age List. Procedia Earth Planet. Sci. 2016, 16, 52–60. [Google Scholar]
- Topal, T.; Doyuran, V. Engineering geological properties and durability assessment of the Cappadocian tuff. Eng. Geol. 1997, 47, 175–187. [Google Scholar]
- Esaki, T.; Jiang, K. Comprehensive study of the weathered condition of welded tuff from a historic stone bridge in Kagoshima, Japan. In Developments in Geotechnical Engineering; Elsevier: Amsterdam, The Netherlands, 2000; Volume 84, pp. 341–350. [Google Scholar]
- Lee, C.H.; Lee, M.S.; Suh, M.; Choi, S.W. Weathering and deterioration of rock properties of the Dabotap pagoda (World Cultural Heritage), Republic of Korea. Environ. Geol. 2005, 47, 547–557. [Google Scholar]
- López-Doncel, R.; Wedekind, W.; Dohrmann, R.; Siegesmund, S. Moisture expansion associated to secondary porosity: An example of the Loseros Tuff of Guanajuato, Mexico. Environ. Earth Sci. 2013, 69, 1189–1201. [Google Scholar]
- Szepesi, J.; Harangi, S.; Ésik, Z.; Novák, T.J.; Lukács, R.; Soós, I. Volcanic geoheritage and geotourism perspectives in Hungary: A case of an UNESCO world heritage site, Tokaj wine region historic cultural landscape, Hungary. Geoheritage 2017, 9, 329–349. [Google Scholar]
- Fanti, R.; Gigli, G.; Lombardi, L.; Tapete, D.; Canuti, P. Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 2013, 10, 409–420. [Google Scholar]
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar]
- Margottini, C.; Antidze, N.; Corominas, J.; Crosta, G.B.; Frattini, P.; Gigli, G.; Giordan, D.; Iwasaky, I.; Lollino, G.; Manconi, A.; et al. Landslide hazard, monitoring and conservation strategy for the safeguard of Vardzia Byzantine monastery complex, Georgia. Landslides 2015, 12, 193–204. [Google Scholar]
- Nolesini, T.; Frodella, W.; Bianchini, S.; Casagli, N. Detecting Slope and Urban Potential Unstable Areas by Means of Multi-Platform Remote Sensing Techniques: The Volterra (Italy) Case Study. Remote Sens. 2016, 8, 746. [Google Scholar] [CrossRef] [Green Version]
- Margottini, C.; Spizzichino, D.; Crosta, G.B.; Frattini, P.; Mazzanti, P.; Mugnozza, G.S.; Beninati, L. Rock fall instabilities and safety of visitors in the historic rock cut monastery of Vardzia (Georgia). In Proceedings of the International Workshop on Volcanic Rocks and Soils, Ischia Island, Italy, 24–25 September 2016; pp. 177–178. [Google Scholar]
- Margottini, C.; Gigli, G.; Ruther, H.; Spizzichino, D. Advances in geotechnical investigations and monitoring in rupestrian settlements inscribed in the UNESCO’s World Heritage List. Procedia Earth Planet. Sci. 2016, 16, 35–51. [Google Scholar]
- Spizzichino, D.; Boldini, D.; Frodella, W.; Elashvili, M.; Margottini, C. Landslide risk analysis and mitigation for the ancient rock-cut city of Vardzia (Georgia). In Proceedings of the 2017 IPL Symposium UNESCO, Paris, France, 29 November 2017; pp. 1–8. [Google Scholar]
- Boldini, D.; Guido, G.L.; Margottini, C.; Spizzichino, D. Stability analysis of a large-volume block in the historical rock-cut city of Vardzia (Georgia). Rock Mech. Rock Eng. 2018, 51, 341–349. [Google Scholar]
- Rüther, H.; Held, C.; Bhurtha, R.; Schroeder, R.; Wessels, S. From Point Cloud to Textured Model, the Zamani Laser Scanning Pipeline in Heritage Documentation. S. Afr. J. Geomat. 2012, 1, 44–59. [Google Scholar]
- Fanez-Ivanovici, M.; Panà, M.C. From Culture to Smart Culture. How digital transformations enhance citizens’well-being through better cultural accessibility and inclusion. IEEE Access 2020, 8. [Google Scholar] [CrossRef]
- Gudjabidze, G.E.; Gamkrelidze, I.P. Geological Map of Georgia 1: 500 000; Georgian State Department of Geology and National Oil Company “Saqnavtobi”: Tbilisi, Georgia, 2003. [Google Scholar]
- Okrostsvaridze, A.; Popkhadze, N.; Bluashvili, D.; Chang, Y.H.; Skhirtladze, I. Pliocene Quaternary Samtskhe-Javakheti Volcanic Highland, Lesser Caucasus—As a result of mantle plumes activity. In Proceedings of the Fourth Plenary Conference of IGCP 610 From the Caspian to Mediterranean: Environmental Change and Human Response during the Quaternary, Tbilisi, Georgia, 2–9 October 2016; Gilbert, A.S., Yanko-Hombach, V., Eds.; Georgian National Academy of Sciences: Tbilisi, Georgia, 2016; pp. 127–131. [Google Scholar]
- Lebedev, V.A.; Chernyshev, I.V.; Vashakidze, G.T.; Gudina, M.V.; Yakushev, A.I. Geochronology of Miocene volcanism in the northern part of the Lesser Caucasus (Erusheti Highland, Georgia). In Doklady Earth Sciences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 444, p. 585. [Google Scholar]
- Okrostsvaridze, A.; Popkhadze, N. Megavolcano in the Late Cenozoic SamtckheJavakheti Volcanic Province? Lesser Caucasus, Georgia-Turkish Border. In Proceedings of the VI International Workshop on Collapse Calderas, Hokkaido, Japan, 4–10 September 2016; International Association of Volcanology and Chemistry of the Earth’s Interior: Rome, Italy, 2016; p. 42. [Google Scholar]
- Tutberidze, B.; Tsutsunava, T. Geological problems of the cave monastery complex of Vardzia (Georgia). In Engineering Geology for Society and Territory; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8, pp. 483–486. [Google Scholar]
- Okrostsvaridze, A.; Elashvili, M.; Kirkitadze, G. Unique Cave City Vardzia, Georgia: Geology, Destruction Processes and Protection Measures, 2016. In Proceedings of the IGCP 610 Fourth Plenary Meeting and Field Trip, Tbilisi, Georgia, 2–9 October 2016. [Google Scholar]
- Okrostsvaridze, A.; Mikheil Elashvili, M.; Nino Popkhadze, N.; Kirkitadze, G. New Data on the Geological Structure of the Vardzia Cave City, Georgia. Bull. Georgian Natl. Acad. Sci. 2016, 10, 98–106. [Google Scholar]
- Okrostsvaridze, A.; Gagnidze, N.; Bobrova, I.; Skhirtladze, I. Late Miocene volcanic ash layers of the intermountain depression of the eastern Caucasus: The product of a megacaldera explosion? In Proceedings of the Joint Meeting of IGCP 610 and INQUA POCAS Focus Group, Palermo, Italy, 1–9 October 2017. [Google Scholar]
- Maldague, X. Theory and Practice of Infrared Technology for Non-Destructive Testing; John-Wiley & Sons: Hoboken, NJ, USA, 2001; p. 684. [Google Scholar]
- Spampinato, L.; Calvari, S.; Oppenheimer, C. Boschi EVolcano surveillance using in-frared cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar]
- Avdelidis, N.P.; Moropoulou, A.; Theoulakis, P. Detection of water deposits and movement in porous materials by infrared imaging. Infrared Phys. Technol. 2003, 44, 183–190. [Google Scholar]
- Tavukçuoğlu, A.; Dügünes, E.N.; Caner-Saltık, Ş.; Demirci, A. Use of IR thermography for the assessment of surface-water drainage problems in a historical building, Ağzıkara-han (Aksaray), Turkey. NDT E Int. 2005, 38, 402–410. [Google Scholar]
- Cabrelles, M.; Galcerá, S.; Navarro, S.; Lerma, J.L.; Akasheh, T.; Haddad, N. Integration of 3D laser scanning, photogrammetry and thermography to record architectural monuments. In Proceedings of the 22nd CIPA Symposium, Kyoto, Japan, 11–15 October 2009. [Google Scholar]
- Aggelis, D.G.; Kordatos, E.Z.; Soulioti, D.V.; Matikas, T.E. Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete. Constr. Build. Mater. 2010, 24, 1888–1897. [Google Scholar]
- De Freitas, S.S.; De Freitas, V.P.; Barreira, E. Detection of façade plaster detach-ments using infrared thermography, a nondestructive technique. Constr. Build. Mater. 2014, 70, 80–87. [Google Scholar]
- Gigli, G.; Intrieri, E.; Lombardi, L.; Nocentini, M.; Frodella, W.; Balducci, M.; Venanti, L.D.; Casagli, N. Event scenario analysis for the design of rockslide countermeasures. J. Mt. Sci. 2014, 11, 1521–1530. [Google Scholar]
- Gigli, G.; Frodella, W.; Garfagnoli, F.; Morelli, S.; Mugnai, F.; Menna, F.; Casagli, N. 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 2014, 11, 131–140. [Google Scholar]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Di Maria, G. Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar]
- Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sens. 2017, 9, 1281. [Google Scholar] [CrossRef] [Green Version]
- Frodella, W.; Morelli, S.; Pazzi, V. Infrared Thermographic surveys for landslide mapping and characterization: The Rotolon DSGSD (Norther Italy) case study. Ital. J. Eng. Geol. Environ. 2017, Special Issue 1, 77–84. [Google Scholar]
- Di Traglia, F.; Nolesini, T.; Ciampalini, A.; Solari, L.; Frodella, W.; Bellotti, F.; Fumagalli, A.; De Rosa, G.; Casagli, N. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 2018, 300, 95–112. [Google Scholar]
- Di Traglia, F.; Nolesini, T.; Solari, L.; Ciampalini, A.; Frodella, W.; Steri, D.; Allotta, B.; Rindi, A.; Marini, L.; Monni, N.; et al. Lava delta deformation as a proxy for submarine slope instability. Earth Planet. Sci. Lett. 2018, 488, 46–58. [Google Scholar]
- Pappalardo, G.; Mineo, S. Study of Jointed and Weathered Rock Slopes through the Innovative Approach of InfraRed Thermography. In Landslides: Theory, Practice and Modelling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 85–103. [Google Scholar]
- FLIR Systems Inc. FLIR ThermaCAM SC620 Technical Specifications. 2009. Available online: www.flir.com/cs/emea/en/view/?id=41965 (accessed on 27 July 2019).
- FLIR Systems Inc. FLIR Tools+ Datasheet. 2015. Available online: https://www.infraredcamerawarehouse.com/content/FLIR%20Datasheets/FLIR%20ToolsPlus%20Datasheet.pdf (accessed on 21 September 2019).
- ESRI Inc. ArcMap 10.6 Datasheet. 2019. Available online: https://www.esri.com/content/dam/esrisites/en-us/media/pdf/product/desktop/ArcGIS-10.6-Desktop-ArcMap-Functionality-Matrix.pdf (accessed on 21 October 2019).
- Chandler, J. Effective application of automated digital photogrammetry for geomorphological research. Earth Surf. Process. Landf. 1999, 24, 51–63. [Google Scholar]
- Zhan, Z.; Zhang, Z.; Zhang, J. An Integrated Photogrammetric System with Metric Digital Camera and Total Station. In Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences, Hanzhou, China, 20–24 June 2006. [Google Scholar]
- Sturzenegger, M.; Stead, D. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci. 2009, 9, 267–287. [Google Scholar]
- Rinaudo, F.; Chiabrando, F.; Lingua, A.; Spanò, A. Archaeological site monitoring: UAV photogrammetry can be an answer. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 583–588. [Google Scholar]
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, C22. [Google Scholar]
- Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P. Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 113. [Google Scholar]
- Agisoft Photoscan, Datasheet. 2017. Available online: https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf (accessed on 22 December 2019).
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eostrans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar]
- Boldini, D.; Wang, F.; Sassa, K.; Tommasi, P. Mechanism of landslide causing the December 2002 tsunami at Stromboli volcano (Italy). In Landslides; Springer: Berlin/Heidelberg, Germany, 2005; pp. 173–180. [Google Scholar]
- Rotonda, T.; Tommasi, P.; Boldini, D. Geomechanical characterization of the volcaniclastic material involved in the 2002 landslides at Stromboli. J. Geotech. Geoenviron. Eng. 2009, 136, 389–401. [Google Scholar]
- ISRM. Suggested methods for determining point load strength. Int. J. Rock Mech. Min. Sci. Geomech. 1985, 22, 51–62. [Google Scholar]
- Margottini, C.; Antidze, N.; Corominas, J.; Crosta, G.B.; Frattini, P.; Gigli, G.; Giordan, D.; Iwasaky, I.; Lollino, G.; Manconi, A.; et al. Landslide Hazard Assessment, Monitoring and Conservation of Vardzia Monastery Complex. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Marunteanu, C., Christaras, B., Yoshinori, I., Margottini, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; p. 8. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides Investigation and Mitigation; Special Report 247; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Goodman, R.E.; Bray, J.W. Toppling of rock slopes. In Proceedings of the ASCE Specialty Conference on Rock Engineering for Foundations and Slopes, Boulder, CO, USA, 15–18 August 1976; Volume 2, pp. 201–234. [Google Scholar]
- Hoek, E.; Bray, J.W. Rock slope engineering. In Institute of Mining and Metallurgy, 3rd ed.; Taylor&Francis: London, UK, 1981; p. 357. ISBN 0-419-16010-8. [Google Scholar]
- Gillespie, M.; Styles, M. BGS Rock Classification Scheme, Volume 1: Classification of Igneous Rocks; British Geological Survey: Keyworth, UK, 1999. [Google Scholar]
- Fisher, R.V. Proposed classification of volcaniclastic sediments and rocks. Geol. Soc. Am. Bull. 1961, 72, 1409–1414. [Google Scholar]
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. Igneous rocks: IUGS classification and glossary: Recommendations of the International Union of Geological Sciences. In Subcommission on the Systematics of Igneous Rock; Le Maitre, R.W., Ed.; University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- White, J.D.L.; Houghton, B.F. Primary volcaniclastic rocks. Geology 2006, 34, 677–680. [Google Scholar]
- Banerjee, N.R.; Muehlenbachs, K. Tuff life: Bioalteration in volcaniclastic rocks from the Ontong Java Plateau. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Wedekind, W.; López-Doncel, R.; Dohrmann, R.; Kocher, M.; Siegesmund, S. Weathering of volcanic tuff rocks caused by moisture expansion. Environ. Earth Sci. 2013, 69, 1203–1224. [Google Scholar]
- Ruedrich, J.; Bartelsen, T.; Dohrmann, R.; Siegesmund, S. Moisture expansion as a deterioration factor for sandstone used in buildings. Environ. Earth Sci. 2011, 63, 1545–1564. [Google Scholar]
- Timothy, P.W.; Stratulat, A.; Duffus, P.; Prévost, J.H.; George, W.; Scherer, W.G. Flaw propagation and buckling in clay-bearing sandstones. Environ. Geol. 2011, 63, 1565–1572. [Google Scholar]
- Dixon, J.B.; Weed, S.B. Minerals in Soil Environments, 2nd ed.; Soil Science Society of America: Wisconsin, MA, USA, 1989; p. 1244. [Google Scholar]
- Weiss, T.; Siegesmund, S.; Kirchner, D.; Sippel, J. Insulation weathering and hygric dilatation as a control on building stone degradation. Environ. Geol. 2004, 46, 402–413. [Google Scholar]
- Guan, P.; Ng, C.W.W.; Sun, M.; Tang, W. Weathering indices for rhyolitic tuff and granite in Hong Kong. Eng. Geol. 2001, 59, 147–159. [Google Scholar]
- Tunusluoglu, M.C.; Zorlu, K. Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environ. Geol. 2009, 56, 963–972. [Google Scholar]
- ISRM. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar]
- Ulusay, R.; Gokceoglu, C.; Topal, T.; Sonmez, H.; Tuncay, E.; Erguler, Z.A.; Kasmer, O. Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgüp (Cappadocia), Turkey. Environ. Geol. 2006, 50, 473–494. [Google Scholar]
- Glavaš, H.; Hadzima-Nyarko, M.; Haničar Buljan, I.; Barić, T. Locating hidden elements in walls of cultural heritage buildings by using infrared thermography. Buildings 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, B.; Sfarra, S.; Ibarra-Castanedo, C.; Avdelidis, N.P.; Maldague, X.P. Thermography data fusion and nonnegative matrix factorization for the evaluation of cultural heritage objects and buildings. J. Therm. Anal. Calorim. 2019, 136, 943–955. [Google Scholar]
- Campione, I.; Lucchi, F.; Santopuoli, N.; Seccia, L. 3D Thermal Imaging System with Decoupled Acquisition for Industrial and Cultural Heritage Applications. Appl. Sci. 2020, 10, 828. [Google Scholar] [CrossRef] [Green Version]
- Commission of the European Communities. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Digitization and Online Accessibility of Cultural Material and Digital Preservation; Commission of the European Communities: Bruxelles, Belgium, 2006. [Google Scholar]
- Themistocleous, K.; Cuca, B.; Agapiou, A.; Lysandrou, V.; Tzouvaras, M.; Hadjimitsis, D.G.; Kyriakides, P.; Kouhartsiouk, D.; Margottini, C.; Spizzichino, D.; et al. The protection of cultural heritage sites from geo-hazards: The PROTHEGO project. Lect. Notes Comput. Sci. 2016, 10059, 91–98. [Google Scholar]
- Alberti, S.; Ferretti, A.; Leoni, G.; Margottini, C.; Spizzichino, D. Surface deformation data in the archaeological site of Petra from medium-resolution satellite radar images and SqueeSAR™ algorithm. J. Cult. Herit. 2017, 25, 10–20. [Google Scholar]
Type of Technique | Type of Data | Notes |
---|---|---|
IRT | Surface temperature maps, surface temperature profiles. | Survey time: July 16–17th, October 20th, 2016 |
UAV-DP, GIS Hydromodelling | 3D slope surface, Drainage pattern map | Survey time: summer of 2017 |
Microclimate data (outdoor and inside the caves) | Air Temperature and Relative Humidity, daily rainfall | Acquiring time: July 9th–15th, 2017 |
Geotechnical analysis | Porosity, Natural moisture, Density, Water resistance, Uniaxial compression strength, Tensile compression strength, Cohesion. | Time of the analysis: 2016 |
Mineralogical analysis | X-Ray Diffractometry | Time of the analysis: 2016 |
Sample Field N° | Sample Lab Num | Layer N° | Porosity, n % | Natural Moisture W % | Density gr/cm3 | Water Resistance | UCS (MPa) | Tensile Strength σt (kPa) | Cohesion c (kPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Natural | Mineral Fraction | Dry Rock | Water Absorption, W % | Water Saturation, % | Water Saturation Coeff., K | Dry Condition | Wet Conditions | Dry Conditions | Wet Conditions | Dry Conditions | Wet Conditions | ||||||
8 | 5 | 1 | 18 | 2.6 | 2.28 | 2.71 | 2.22 | 8 | 10 | 0.8 | 14.8 | 5 | 1480 | 500 | 2693 | 910 | |
9 | 6 | 16 | 1.4 | 2.32 | 2.73 | 2.29 | 8 | 10 | 0.80 | ||||||||
1 | 1 | 2 | 25 | 3.6 | 2.05 | 2.65 | 1.98 | 12 | 15 | 0.80 | 9.3 | 2.6 | 925 | 300 | 1926 | 538 | |
2 | 2 | 22 | 3.4 | 2.17 | 2.69 | 2.10 | 9 | 12 | 0.74 | ||||||||
10 | 7 | 18 | 1.4 | 2.24 | 2.71 | 2.21 | 8 | 10 | 0.80 | ||||||||
11 | 8 | 25 | 2.5 | 2.04 | 2.65 | 1.99 | 10 | 13 | 0.77 | ||||||||
4 | 3 | 3 | 25 | 3.0 | 2.06 | 2.65 | 2.00 | 11 | 14 | 0.79 | 10.3 | 3.6 | 750 | 300 | n.a. | n.a. | |
7 | 4 | 29 | 2.3 | 1.90 | 2.63 | 1.86 | 8 | 13 | 0.72 | ||||||||
13 | 9 | 22 | 3.0 | 2.16 | 2.69 | 2.10 | 8 | 11 | 0.73 | ||||||||
20 | 12 | 26 | 3.5 | 2.04 | 2.65 | 1.97 | 11 | 15 | 0.73 | ||||||||
23-1m | 14 | 26 | 3.1 | 2.00 | 2.63 | 1.94 | 9 | 13 | 0.69 | ||||||||
24-3m | 15 | 25 | 2.8 | 2.04 | 2.65 | 1.98 | 8 | 11 | 0.73 | ||||||||
25-6m | 16 | 24 | 2.6 | 2.07 | 2.66 | 2.02 | 7 | 10 | 0.70 | ||||||||
17 | 10 | 4 | 20 | 1.8 | 2.28 | 2.71 | 2.16 | 7 | 9 | 0.78 | n.a. | ||||||
19 | 11 | 21 | 2.5 | 2.17 | 2.69 | 2.12 | 11 | 14 | 0.79 | ||||||||
21 | 13 | 16 | 0.6 | 2.34 | 2.73 | 2.33 | 5 | 7 | 0.71 |
Station ID | Elevation (m a.s.l.) | Depth with Respect to Rock Surface (cm) | Depth from the Cliff’s Surface (cm) | Time Required for Runoff Water to Infiltrate |
---|---|---|---|---|
VC1 | 1329 | 32 | 10 | Open Cave, isolated from main rock slope |
VC2 | 1375 | 78 | 10 | 16–17 Days (6–7 Days for the first peak) |
VC3/VC7 | 1376 | 79 | 10 | Permanent moisture zone |
VC4 | 1361 | 64 | 30 | 5–6 Days |
VC5 | 1377 | 80 | 40 | 4–5 Days |
VC6 | 1364 | 67 | 10 | 14–17 Days |
Slope Sectors | Upper Slope | Slope Toe | Rock Cliff | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope Cliff | Cold Thermal Anomalies | ||||||||||||
Caves | Cliff Vegetation | Rivulets/Moisture Sectors | |||||||||||
Surveys | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
ST values (C°) | Min | 21 | 9 | 22.2 | 11.2 | 24.1 | 10.1 | 18 | 8.1 | 20.4 | 8.5 | 18.9 | 8 |
Max | 25.5 | 13.2 | 26 | 15.6 | 31.6 | 18.1 | 24.2 | 9.7 | 23.6 | 10.7 | 24.2 | 12.4 | |
Mean | 23.3 | 11.1 | 24.1 | 13.4 | 27.9 | 14.1 | 21.1 | 8.9 | 22 | 9.6 | 21.6 | 10.2 | |
ΔT | 4.5 | 4.2 | 3.8 | 4.4 | 7.5 | 8 | 6.2 | 1.6 | 3.2 | 2.2 | 5.3 | 4.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frodella, W.; Elashvili, M.; Spizzichino, D.; Gigli, G.; Adikashvili, L.; Vacheishvili, N.; Kirkitadze, G.; Nadaraia, A.; Margottini, C.; Casagli, N. Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application. Remote Sens. 2020, 12, 892. https://doi.org/10.3390/rs12050892
Frodella W, Elashvili M, Spizzichino D, Gigli G, Adikashvili L, Vacheishvili N, Kirkitadze G, Nadaraia A, Margottini C, Casagli N. Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application. Remote Sensing. 2020; 12(5):892. https://doi.org/10.3390/rs12050892
Chicago/Turabian StyleFrodella, William, Mikheil Elashvili, Daniele Spizzichino, Giovanni Gigli, Luka Adikashvili, Nikoloz Vacheishvili, Giorgi Kirkitadze, Akaki Nadaraia, Claudio Margottini, and Nicola Casagli. 2020. "Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application" Remote Sensing 12, no. 5: 892. https://doi.org/10.3390/rs12050892