Habitat-Suitability Model for the Yellow Rail (Coturnicops noveboracensis) in the Northern Gulf Coast of Alabama and Mississippi, USA
Abstract
1. Introduction
2. Materials and Methods
1. Distance to estuarine emergent wetland | Euclidean distance to Coastal Change Analysis Program (C-CAP) land cover type. Derived from the Coastal Change Analysis Program 2010 Regional Land Cover dataset [42]. |
2. Distance to estuarine forest wetland | |
3. Distance to estuarine shrub/scrub wetland | |
4. Distance to forest | |
5. Distance to grassland | |
6. Distance to palustrine emergent wetland | |
7. Distance to palustrine forest wetland | |
8. Distance to palustrine shrub/scrub wetland | |
9. Distance to shrub/scrub | |
10. Distance to water | |
11. Frequency of estuarine emergent wetland | Frequency of C-CAP land cover type 100 m radius. Cover derived from the Coastal Change Analysis Program 2010 Regional Land Cover dataset [42]. |
12. Frequency of estuarine forest wetland | |
13. Frequency of estuarine shrub/scrub wetland | |
14. Frequency of forest | |
15. Frequency of grassland | |
16. Frequency of palustrine emergent wetland | |
17. Frequency of palustrine forest wetland | |
18. Frequency of palustrine shrub/scrub wetland | |
19. Frequency of shrub/scrub | |
20. Frequency of water | |
21. Wetland soil landscapes (PWSL) | Gridded Soil Survey Geographic (gSSURGO) by State [44]. |
22. Precipitation in January | Monthly precipitation averaged from 1981–2010. Derived from PRISM Climate Data: 1981–2010 Monthly Average Precipitation by State [45]. |
23. Precipitation in February | |
24. Precipitation in March | |
25. Precipitation in April | |
26. Precipitation in May | |
27. Precipitation in June | |
28. Precipitation in July | |
29. Precipitation in August | |
30. Precipitation in September | |
31. Precipitation in October | |
32. Precipitation in November | |
33. Precipitation in December |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leston, L.; Bookhout, T.A. Yellow rail (Coturnicops noveboracensis), version 2.0. In The Birds of North America; Poole, A.F., Ed.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2015. [Google Scholar]
- Austin, J.E.; Buhl, D.A. Relating yellow rail (Coturnicops noveboracensis) occupancy to habitat and landscape features in the context of fire. Waterbirds 2013, 36, 199–213. [Google Scholar] [CrossRef]
- Morris, K.M.; Woodrey, M.S.; Hereford, S.G.; Soehren, E.C.; Conkling, T.J.; Rush, S.A. Yellow rail (Coturnicops noveboracensis) occupancy in the context of fire in Mississippi and Alabama. Waterbirds 2017, 40, 5–104. [Google Scholar] [CrossRef]
- Soehren, E.C.; Hereford, S.G.; Morris, K.M.; Trent, J.A.; Walker, J.; Woodrey, M.S.; Rush, S.A. Winter use of wet pine savannas by yellow rail (Coturnicops noveboracensis) along coastal Alabama and Mississippi. Wilson J. Ornithol. 2018, 130, 615–625. [Google Scholar] [CrossRef]
- Committee on the Status of Endangered Wildlife in Canada (COSEWIC). COSEWIC Assessment and Status Report on the Yellow Rail in Canada; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2009. [Google Scholar]
- U.S. Fish and Wildlife Service. Birds of Conservation Concern 2008; Division of Migratory Bird Management: Arlington, VA, USA, 2008. [Google Scholar]
- Grace, J.B.; Allain, L.K.; Baldwin, H.Q.; Billock, A.G.; Eddleman, W.R.; Given, A.M.; Jeske, C.W.; Moss, R. Effects of Prescribed Fire in the Coastal Prairies of Texas; U.S. Department of the Interior, Fish and Wildlife Service, Region 2, U.S. Geological Survey: Reston, VA, USA, 2005.
- Mizell, K.L. Effects of Fire and Grazing of Yellow Rail Habitat in a Texas Coastal Marsh. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1998. [Google Scholar]
- Post, W. Winter ecology of yellow rails based on South Carolina specimens. Wilson J. Ornithol. 2008, 120, 606–610. [Google Scholar] [CrossRef]
- Butler, C.J.; Pham, L.H.; Stinedurf, J.N.; Roy, C.L.; Judd, E.L.; Burgess, N.J.; Caddell, G.M. Yellow rails wintering in Oklahoma. Wilson J. Ornithol. 2010, 122, 385–387. [Google Scholar] [CrossRef]
- Butler, C.J.; Wilson, J.K.; Frazee, S.R.; Kelly, J.F. A comparison of the origins of yellow rails (Coturnicops noveboracensis) wintering in Oklahoma and Texas, USA. Waterbirds 2016, 39, 156–164. [Google Scholar] [CrossRef]
- Wayne, A.T. Notes on certain birds taken or seen near Charleston, South Carolina. Auk 1905, 22, 395–400. [Google Scholar]
- Heck, B.A.; Arbour, W.D. The yellow rail in Oklahoma. Bull. Oklahoma Ornith. Soc. 2008, 41, 13–15. [Google Scholar]
- Peet, R.K.; Allard, D.J. Longleaf pine vegetation of the southern Atlantic and eastern Gulf Coast regions: A preliminary classification. Proc. Tall Timbers Fire Ecol. Conf. 1993, 18, 45–81. [Google Scholar]
- Ratnam, J.; Bond, W.J.; Fensham, R.J.; Hoffmann, W.A.; Archibald, S.; Lehmann, C.E.R.; Anderson, M.T.; Higgins, S.I.; Sankaran, M. When is a ‘forest’ a savanna, and why does it matter? Global Ecol. Biogeogr. 2011, 20, 653–660. [Google Scholar] [CrossRef]
- Platt, W.J.; Entrup, A.K.; Babl, E.K.; Coryell-Turpin, C.; Dao, V.; Hebert, J.A.; LaBarbera, C.D.; Noto, J.F.L.; Ogundare, S.O.; Timilsina, N. Short-term effects of herbicides and a prescribed fire on restoration of a shrub-encroached pine savanna. Restor. Ecol. 2015, 23, 909–917. [Google Scholar] [CrossRef]
- Van Langevelde, F.; Van De Vijver, C.A.D.M.; Kumar, L.; Van De Kopper, J.; De Ridder, N.; Van Andel, J.; Skidmore, A.K.; Hearne, J.W.; Stroosnijder, L.; Bond, W.J.; et al. Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 2003, 84, 337–350. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Platt, W.J. Conservation and restoration of the Pinus palustris ecosystem. Appl. Veg. Sci. 2006, 9, 7–10. [Google Scholar] [CrossRef]
- Noss, R.F. Longleaf pine and wiregrass: Keystone components of an endangered ecosystem. Nat. Areas J. 1989, 9, 211–213. [Google Scholar]
- Simberloff, D. Species-area and fragmentation effects on old-growth forests: Prospects for longleaf pine communities. Proc. Tall Timbers Fire Ecol. Conf. 1993, 18, 1–13. [Google Scholar]
- Brockway, D.G.; Lewis, C.E. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. For. Ecol. Manag. 1997, 96, 167–183. [Google Scholar] [CrossRef]
- Frost, C.C. Four centuries of changing landscape patterns in the longleaf pine ecosystem. Proc. Tall Timbers Fire Ecol. Conf. 1993, 18, 17–43. [Google Scholar]
- Means, D.B.; Palis, J.G.; Baggett, M. Effects of slash pine silviculture on a Florida population of flatwoods salamander. Conserv. Biol. 1996, 10, 426–437. [Google Scholar] [CrossRef]
- Glitzenstein, J.S.; Platt, W.J.; Streng, D.R. Effects of fire regime and habitat on tree dynamics in north Florida longleaf pine savannas. Ecol. Monogr. 1995, 65, 441–476. [Google Scholar] [CrossRef]
- Olson, M.S.; Platt, W.J. Effects of habitat and growing season fires on resprouting of shrubs in longleaf pine savannas. Vegetatio 1995, 119, 101–118. [Google Scholar] [CrossRef]
- Palmquist, K.A.; Peet, R.K.; Weakley, A.S. Changes in plant species richness following reduced fire frequency and drought in one of the most species-rich savannas in North America. J. Veg. Sci. 2014, 25, 1426–1437. [Google Scholar] [CrossRef]
- Engler, R.; Guisan, A.; Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 2004, 41, 263–274. [Google Scholar] [CrossRef]
- Engstrom, R.T.; Vickery, P.D.; Perkins, D.W.; Shriver, W.G. Effects of fire regime on birds in southeastern pine savannas and native prairies. Stud. Avian Biol. Ser. 2005, 30, 147–160. [Google Scholar]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Norquist, H.C. A Comparative Study of the Soils and Vegetation of Savannas in Mississippi. Ph.D. Thesis, Mississippi State University, Mississippi State, MS, USA, 1984. [Google Scholar]
- Greller, A.M. Correlation of warmth and temperateness with the distributional limits of zonal forests in eastern North America. Bull. Torrey Bot. Club 1989, 116, 145–163. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. Comprehensive Conservation Plan for Mississippi Sandhill Crane National Wildlife Refuge, Jackson County, Mississippi; U.S. Department of Interior, U.S. Fish and Wildlife Service, Southeast Region: Atlanta, GA, USA, 2007. [Google Scholar]
- Folkerts, G.W. A preliminary classification of pitcher plant habitats in the southeastern United States. J. Ala. Acad. Sci. 1991, 62, 199–225. [Google Scholar]
- Freeman, J.E.; Kobziar, L.N.; Leone, E.H.; Williges, K. Drivers of plant functional group richness and beta diversity in fire-dependent pine savannas. Divers. Distrib. 2019, 25, 1024–1044. [Google Scholar] [CrossRef]
- Morris, K.M. Ecology of Yellow Rail (Coturnicops noveboracensis) Overwintering in Coastal Pine Savannas of the Northern Gulf of Mexico. Master’s Thesis, Mississippi State University, Mississippi State, MS, USA, 2015. [Google Scholar]
- Veloz, S.D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 2009, 36, 2290–2299. [Google Scholar] [CrossRef]
- Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. C-CAP Regional Land Cover. Coastal Change Analysis Program (C-CAP) Regional Land Cover. 2010. Available online: http://www.coast.noaa.gov/ccapftp (accessed on 1 August 2019).
- Noss, R. Forgotten Grasslands of the South: Natural History and Conservation; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- U.S. Department of Agriculture, Natural Resources Conservation Service. Gridded Soil Survey Geographic (gSSURGO) Database for Alabama and Mississippi. Available online: https://gdg.sc.egov.usda.gov/ (accessed on 1 August 2019).
- PRISM Climate Group. Average Monthly and Average Annual Precipitation 1961–1990, 1971–2000 and 1981–2010 by State. Oregon State University. Available online: http://prism.oregonstate.edu (accessed on 1 August 2019).
- Akaike, H. A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1974; pp. 215–222. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference; Springer: New York, NY, USA, 2002. [Google Scholar]
- Jueterbock, A.; Smolina, I.; Coyer, J.A.; Hoarau, G. The fate of the Arctic seaweed Fucus distichus under climate change: An ecological niche modeling approach. Ecol. Evol. 2016, 6, 1712–1724. [Google Scholar] [CrossRef] [PubMed]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Ansari, H.M.; Ghoddousi, A. Water availability limits brown bear distribution at the southern edge of its global range. Ursus 2018, 29, 13–25. [Google Scholar] [CrossRef]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, F.; Li, G.; Qin, W.; Li, S.; Gao, H.; Cai, Z.; Lin, G.; Zhang, T. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecol. Evol. 2019, 9, 6643–6654. [Google Scholar] [CrossRef]
- McLaughlin, B.C.; Ackerly, D.D.; Klos, P.Z.; Natali, J.; Dawson, T.E.; Thompson, S.E. Hydrologic refugia, plants, and climate change. Glob. Chang. Biol. 2017, 23, 2941–2961. [Google Scholar] [CrossRef]
- Greene, R.E.; Iglay, R.B.; Evans, K.O.; Miller, D.A.; Wigley, T.B.; Riffell, S.K. A meta-analysis of biodiversity responses to management of southeastern pine forests—Opportunities for open pine conservation. For. Ecol. Manag. 2016, 360, 30–39. [Google Scholar] [CrossRef]
- Honda, E.A.; Durigan, G. Woody encroachment and its consequences on hydrological processes in the savannah. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150313. [Google Scholar] [CrossRef] [PubMed]
- Beckage, B.; Gross, L.J.; Platt, W.J. Modeling responses of pine savannas to climate change and large-scale disturbance. Appl. Veg. Sci. 2006, 9, 75–82. [Google Scholar] [CrossRef]
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Wehner, M.; Colle, B.; Fischer, E.M.; Fu, R.; et al. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 2014, 95, 571–583. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Liu, Y.; O’Brien, J.J.; Elliott, K.J.; Starr, G.; Miniat, C.F.; Hiers, J.K. Future climate and fire interactions in the southeastern region of the United States. For. Ecol. Manag. 2014, 327, 316–326. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Slocum, M.G.; Beckage, B.; Platt, W.J.; Orzell, S.L.; Taylor, W. Effect of climate on wildfire size: A cross-scale analysis. Ecosystems 2010, 13, 828–840. [Google Scholar] [CrossRef]
- Varner, J.M., III; Gordon, D.R.; Putz, F.E.; Hiers, J.K. Restoring fire to long-unburned Pinus palustris ecosystems: Novel fire effects and consequences for long-unburned ecosystems. Restor. Ecol. 2005, 13, 536–544. [Google Scholar] [CrossRef]
Features a | β b | Test AUC c | Training AUC d | AUC Difference e | Mean Omission Rate f | Mean Minimum Omission Rate g | Number of Parameters h |
---|---|---|---|---|---|---|---|
H | 1 | 0.99 ± 0.006 SE | 0.991 ± 0.003 SE | 0.005 | 0.093 | 0.008 | 17 |
Environmental Variable | Percent Contribution | Variable Description and Source |
---|---|---|
Frequency of palustrine emergent wetland | 33.1 | Frequency of palustrine emergent wetland habitat within a specified radius. Derived from the Coastal Change Analysis Program 2010 Regional Land Cover dataset [42]. |
Frequency of palustrine shrub/scrub wetland | 21.8 | Frequency of palustrine shrub/scrub wetland habitat within a specified radius. Derived from the Coastal Change Analysis Program 2010 Regional Land Cover dataset [42]. |
June precipitation | 16.9 | Monthly precipitation averaged from 1981–2010. Derived from PRISM Climate Data: 1981–2010 Monthly Average Precipitation by State [45]. |
August precipitation | 10.6 | Monthly precipitation averaged from 1981–2010. Derived from PRISM Climate Data: 1981–2010 Monthly Average Precipitation by State [45]. |
September precipitation | 10.5 | Monthly precipitation averaged from 1981–2010. Derived from PRISM Climate Data: 1981–2010 Monthly Average Precipitation by State [45]. |
Distance to palustrine emergent wetland | 7.1 | Euclidean distance to palustrine emergent wetland habitat. Derived from the Coastal Change Analysis Program 2010 Regional Land Cover dataset [42]. |
Species Distribution Classes | Estimated Area (ha) | Proportion of the Study Area (%) |
---|---|---|
High potential (0.6 ≤ 1.0) | 2436 | 0.31 |
Moderate potential (0.4 ≤ 0.6) | 1356 | 0.17 |
Low potential (0.2 ≤ 0.4) | 4851 | 0.62 |
Unsuitable (0 ≤ 0.2) | 776,014 | 98.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, K.M.; Soehren, E.C.; Woodrey, M.S.; Rush, S.A. Habitat-Suitability Model for the Yellow Rail (Coturnicops noveboracensis) in the Northern Gulf Coast of Alabama and Mississippi, USA. Remote Sens. 2020, 12, 848. https://doi.org/10.3390/rs12050848
Morris KM, Soehren EC, Woodrey MS, Rush SA. Habitat-Suitability Model for the Yellow Rail (Coturnicops noveboracensis) in the Northern Gulf Coast of Alabama and Mississippi, USA. Remote Sensing. 2020; 12(5):848. https://doi.org/10.3390/rs12050848
Chicago/Turabian StyleMorris, Kelly M., Eric C. Soehren, Mark S. Woodrey, and Scott A. Rush. 2020. "Habitat-Suitability Model for the Yellow Rail (Coturnicops noveboracensis) in the Northern Gulf Coast of Alabama and Mississippi, USA" Remote Sensing 12, no. 5: 848. https://doi.org/10.3390/rs12050848
APA StyleMorris, K. M., Soehren, E. C., Woodrey, M. S., & Rush, S. A. (2020). Habitat-Suitability Model for the Yellow Rail (Coturnicops noveboracensis) in the Northern Gulf Coast of Alabama and Mississippi, USA. Remote Sensing, 12(5), 848. https://doi.org/10.3390/rs12050848