Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Procedure
[0.14 × EY (bu/A) × % OM] − other N credits (lb/A)}.
2.3. Proximal Canopy Sensing
2.4. Statistical Analysis
3. Results
3.1. Crop Growth Stages and Changes in NDVI
3.2. In-field Spatial Variability of Winter Wheat
3.3. Relationship between NDVI and Grain Yield
3.4. Comparing NDVI and Yield Classification
4. Discussion
4.1. Crop Growth Stages and Changes in NDVI
4.2. Relationship between NDVI and Grain Yield
4.3. Comparing NDVI and Yield Classification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Regan, K.L.; Siddique, K.H.M.; Turner, B.N.C.; Whan, B.R. Potential for Increasing Early Vigour and Total Biomass in Spring Wheat II. Characteristics Associated with Early Vigour. Aust. J. Agric. Res. 1992, 43, 541–553. [Google Scholar] [CrossRef]
- Elliott, G.A.A.; Regan, K.L. Use of Reflectance Measurements to Estimate Early Cereal Biomass Production on Sandplain Soils. Aust. J. Exp. Agric. 1993, 33, 179–183. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral Reflectance to Estimate Genetic Variation for In-Season Biomass, Leaf Chlorophyll, and Canopy Temperature in Wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Inman, D.; Khosla, R.; Mayfield, T. On-the-Go Active Remote Sensing for Efficient Crop Nitrogen Management. Sens. Rev. 2005, 25, 209–214. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Detection of Spatial and Temporal Variability of Wheat Cultivars by High-Resolution Vegetation Indices. Agronomy (Basel) 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Yang, M.J.; Rasheed, A.; Yang, G.J.; Reynolds, M.; Xia, X.C.; Xiao, Y.G.; He, Z.H. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Ketterings, Q.M. In-Season Estimation of Corn Yield Potential Using Proximal Sensing. Agron. J. 2017, 109, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Rhezali, A.; Purcell, L.C.; Roberts, T.L.; Greub, C.E. Predicting Nitrogen Requirements for Maize with the Dark Green Color Index under Experimental Conditions. Agron. J. 2018, 110, 1173–1179. [Google Scholar] [CrossRef]
- Royo, C.; Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Corresponding, C.R.; Aparicio, N.; Villegas, D.; Casadesus, J. Usefulness of Spectral Reflectance Indices as Durum Wheat Yield Predictors under Contrasting Mediterranean Conditions. Int. J. Remote Sens. 2003, 24, 4403–4419. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Araus, J.L.; Casadesus, J.; Royo, C. Relationship between Growth Traits and Spectral Vegetation Indices in Durum Wheat. Crop Sci. 2002, 42, 1547–1555. [Google Scholar] [CrossRef]
- Serrano, L.; Filella, I.; Pen, J. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.P.; Skovmand, B.; Trethowan, R.; Singh, R.P.; van Ginkel, M. Research Highlights of the CIMMYT Wheat Program, 1999–2000; CIMMYT: Mexico City, Mexico, 2001; ISBN 970-648-069-2. [Google Scholar]
- Araus, J.; Casadesús, J.; Bort, J. Recent Tools for the Screening of Physiological Traits Determining Yield. In Application of Physiology in Wheat Breeding; Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A., Eds.; CIMMYT: Mexico City, Mexico, 2001; pp. 59–77. ISBN 970-648-077-3. [Google Scholar]
- Liu, X.J.; Ferguson, R.B.; Zheng, H.B.; Cao, Q.; Tian, Y.C.; Cao, W.X.; Zhu, Y. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China). Sensors (Basel) 2017, 17, 672. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.I.; Royo, C. Spectral Vegetation Indices as Nondestructive Tools for Determining Durum Wheat Yield. Agron. J. 2000, 91, 83–91. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.M.; Bort, J.; Nogues, S.; Araus, J.L. NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Goodwin, A.W.; Lindsey, L.E.; Harrison, S.K.; Paul, P.A. Estimating Wheat Yield with Normalized Difference Vegetation Index and Fractional Green Canopy Cover. Crop Forage Turf. Man. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Tubaña, B.; Harrell, D.; Walker, T.; Teboh, J.; Lofton, J.; Kanke, Y.; Phillips, S. Relationships of Spectral Vegetation Indices with Rice Biomass and Grain Yield at Different Sensor View Angles. Agron. J. 2011, 103, 1405–1413. [Google Scholar] [CrossRef]
- Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of Two Crop Canopy Sensors for Nitrogen Variability Determination in Irrigated Maize. Precis. Agric. 2011, 12, 892–904. [Google Scholar] [CrossRef]
- Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of Two Ground-Based Active Crop Canopy Sensors in Maize: Growth Stage, Row Spacing, and Sensor Movement Speed. Soil Sci. Soc. Am. J. 2010, 74, 2101–2108. [Google Scholar] [CrossRef]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early Prediction of Soybean Yield from Canopy Reflectance Measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R. Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Lamb, D.W.; Schaare, P.; Hanna, M.M.; Silvester, W. Estimating Leaf Nitrogen Concentration in Ryegrass (Lolium Spp.) Pasture Using the Chlorophyll Red- Edge: Theoretical Modelling and Experimental Observations. Int. J. Remote Sens. 2002, 23, 3619–3648. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Lukina, E.V.; Thomason, W.E.; Schepers, J.S. In-Season Prediction of Potential Grain Yield in Winter Wheat Using Canopy Reflectance. Agron. J. 2001, 93, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Inman, D.; Khosla, R.; Reich, R.M.; Westfall, D.G. Active Remote Sensing and Grain Yield in Irrigated Maize. Precis. Agric. 2007, 8, 241–252. [Google Scholar] [CrossRef]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.A.; Raun, W.R.; Klatt, A.R. Potential Use of Spectral Reflectance Indices as a Selection Tool for Grain Yield in Winter Wheat under Great Plains Conditions. Crop Sci. 2007, 47, 1426–1440. [Google Scholar] [CrossRef] [Green Version]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can Wheat Yield Be Assessed by Early Measurements of Normalized Difference Vegetation Index? Ann. Appl. Biol. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Richardson, A.J.; Escobar, D.E.; Gerbermann, A.H. Vegetation Indexes in Crop Assessments. Remote Sens. Environ. 1991, 35, 105–119. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Chawade, A.; van Ham, J.; Blomquist, H.; Bagge, O.; Alexandersson, E.; Ortiz, R. High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy (Basel) 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Kefauver, S.C. Breeding to adapt agriculture to climate change: Affordable phenotyping solutions. Curr. Opin. Plant Biol. 2018, 45, 237–247. [Google Scholar] [CrossRef]
- Honsdor, N.; Verhulst, N.; Crossa, J.; Vargas, M.; Govaerts, B.; Ammar, K. Durum wheat selection under zero tillage increases early vigor and is neutral to yield. Field Crops Res. 2019. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Fernandez-Gallego, J.A.; Vergara-Diaz, O.; Nieto-Taladriz, M.T.; Araus, J.L. UAV and Ground Image-Based Phenotyping: A Proof of Concept with Durum Wheat. Remote Sens. (Basel) 2019, 11, 1244. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.S.; Reynolds, M.P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Rudd, J.C.; Xue, Q.W.; Bhandari, M.; Reddy, S.K.; Jessup, K.E.; Liu, S.Y.; Devkota, R.N.; Baker, J.; Baker, S. Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. J. Crop Improv. 2019, 33, 633–648. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, Z.; Fan, Z.R.; Li, J.F.; Gao, X.; Zhang, H.Z.; Zhao, Q.; Wang, Z.Y.; Liu, Z.Y. Phenotyping and evaluation of CIMMYT WPHYSGP nursery lines and local wheat varieties under two irrigation regimes. Breed. Sci. 2019, 69, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Marino, S.; Alvino, A. Agronomic Traits Analysis of Ten Winter Wheat Cultivars Clustered by UAV-Derived Vegetation Indices. Remote Sens. 2020, 12, 249. [Google Scholar] [CrossRef] [Green Version]
- Crabb, J.A. Soil Survey of Weld County, Colorado, Southern Part; USDA, Soil Conserv. Serv.: Washington, DC, USA, 1980; pp. 1–135. Available online: https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/colorado/CO618/0/weld.pdf (accessed on 2 October 2012).
- USDA. CoAgMet Raw Data Access, Stations, Greeley and Greeley 4. Available online: http://climate.colostate.edu/~coagmet/rawdata_form.php (accessed on 2 October 2012).
- Gee, G.; Bauder, J. Particle-Size Analysis. In Methods of Soil Analysis, Part 1; Klute, A., Ed.; Agron. Monogr. 9; ASA; SSSA: Madison, WI, USA, 1986; pp. 383–411. ISBN 978-0-89118-811-7. [Google Scholar]
- Thomas, G.W. Soil PH and Soil Acidity. In Methods of Soil Analysis, Part 3-Chemical Methods; Sparks, D.L., Ed.; SSSA Book Ser. No. 5; SSSA; ASA: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Mulvaney, R.L. Nitrogen-Inorganic Forms. In Methods of Soil Analysis, Part 3-Chemical Methods; Sparks, D.L., Ed.; SSSA Book Ser. No. 5; SSSA; ASA: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Making Better Decisions. 2012 Colorado Winter Wheat Variety Performance Trials. Colorado Agricultural Experiment Station, Colorado State University Extension. Available online: https://webdoc.agsci.colostate.edu/csucrops/reports/winterwheat/wheatreport_2012.pdf (accessed on 19 February 2020).
- Davis, J.; Westfall, D.W. Fertilizing Corn. Colorado State University Factsheet 0.538 2014. Available online: https://extension.colostate.edu/docs/pubs/crops/00538.pdf (accessed on 30 January 2020).
- Andales, A.; Chavez, J.L.; Bauder, T.A. Irrigation Scheduling: The Water Balance Approach. Fact Sheet 4.707. Irrigation. Available online: https://extension.colostate.edu/docs/pubs/crops/04707.pdf (accessed on 30 January 2020).
- NTech Industries Model 500 GreenSeeker Hand Held™ Optical Sensor Unit. Available online: http://nue.okstate.edu/Hand_Held/GS_HandHeld_Manual_rev_K[1].pdf (accessed on 2 October 2012).
- Team, R.D.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2006; Available online: http://www.r-project.org (accessed on 1 July 2015).
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Scheaffer, R.; Mendenhall, W.O.; Ott, L. Elementary Survey Sampling, 4th ed.; PWS-Kent: Boston, MA, USA, 1990; ISBN 978-0-53492-185-9. [Google Scholar]
- Hornung, A.; Khosla, R.; Reich, R.; Inman, D.; Westfall, D.G. Comparison of Site-Specific Management Zones: Soil-Color-Based and Yield-Based. Agron. J. 2006, 98, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, N.; Govaerts, B.; Sayre, K.D.; Deckers, J.; Francois, I.M.; Dendooven, L. Using NDVI and Soil Quality Analysis to Assess Influence of Agronomic Management on Within-Plot Spatial Variability and Factors Limiting Production. Plant Soil 2009, 317, 41–59. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B. The Normalized Difference Vegetation Index (NDVI) GreenSeeker TM Handheld Sensor: Toward the Integrated Evaluation of Crop Management. Part B: User Guide; CIMMYT: Mexico City, Mexico, 2010; pp. 1–8. Available online: https://repository.cimmyt.org/xmlui/bitstream/handle/10883/551/94193.pdf (accessed on 2 October 2012).
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Duchemin, B.; Hadria, R.; Erraki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.; Hoedjes, J.; Kharrou, M.; et al. Monitoring Wheat Phenology and Irrigation in Central Morocco: On the Use of Relationships between Evapotranspiration, Crops Coefficients, Leaf Area Index and Remotely-Sensed Vegetation Indices. Agric. Water Manag. 2006, 79, 1–27. [Google Scholar] [CrossRef]
- Carlson, T.N.; Perry, E.M.; Schmugge, T.J. Remote Estimation of Soil Moisture Availability and Fractional Vegetation Cover for Agricultural Fields. Agric. For. Meteorol. 1990, 52, 45–69. [Google Scholar] [CrossRef]
- Pavuluri, K.; Chim, B.K.; Griffey, C.A.; Reiter, M.S.; Balota, M.; Thomason, W.E. Canopy spectral reflectance can predict grain nitrogen use efficiency in soft red winter wheat. Precis. Agric. 2015, 16, 718–719. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, G.; Liu, J.; Cao, J.; Li, C.; Zhao, X.; Gai, J. Establishment of Plot-Yield Prediction Models in Soybean Breeding Programs Using UAV-Based Hyperspectral Remote Sensing. Remote Sens. 2019, 11, 2752. [Google Scholar] [CrossRef] [Green Version]
Site year | Sampling depths | N at early spring | N after harvest | |||||||
pH | O.M | Sand | Silt | Clay | Soil texture | |||||
(cm) | % | Mg g−1 | Mg g−1 | % | ||||||
I | 0-20 | Min | 7.9 | 1 | 22 | 5 | 64.8 | 13.6 | 9.6 | Sandy Loam |
Mean | 8 | 1.1 | 31 | 7.9 | 68.4 | 16.5 | 15.1 | |||
Max | 8.1 | 1.3 | 47 | 14 | 72.8 | 21.6 | 17.6 | |||
20-61 | Min | 7.9 | 0.9 | 11 | 5 | 60.8 | 13.6 | 11.6 | Sandy Loam | |
Mean | 8 | 1.1 | 22.3 | 12.5 | 67.7 | 16.9 | 15.3 | |||
Max | 8.2 | 1.3 | 40 | 37 | 72.8 | 21.6 | 17.6 | |||
Site year | Sampling depths | N at early fall | N after harvest | |||||||
pH | O.M | Sand | Silt | Clay | Soil texture | |||||
(cm) | % | Mg g−1 | Mg g−1 | % | ||||||
II | 0-20 | Min | 7.8 | 1 | 30 | 8 | 58.8 | 4.4 | 12.8 | Sandy Loam |
Mean | 8 | 1.2 | 38 | 15.4 | 64.9 | 16.7 | 18.4 | |||
Max | 8.1 | 1.5 | 54 | 22 | 70.8 | 24.4 | 30.8 | |||
20-61 | Min | 8 | 0.8 | 16 | 4 | 53.2 | 3.6 | 15.2 | Sandy Loam | |
Mean | 8.2 | 1 | 22.4 | 9.8 | 61.7 | 17.7 | 20.5 | |||
Max | 8.4 | 1.3 | 44 | 22.0 | 67.2 | 27.6 | 29.2 |
Site Year I | Site Year II | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dryland | Irrigated | Dryland | Irrigated | |||||||||||||||||
NDVI | NDVI | NDVI | NDVI | |||||||||||||||||
Wheat Genotype | E⁺ | J٭ | A* | MG† | Grain Yield ± SD ‡ (Mg ha−1) | E | J | A | MG | Grain Yield ± SDyacohi (Mg ha−1) | E | J | A | MG | Grain Yieldyacohi ± SD (Mg ha−1) | E | J | A | MG | Grain Yield ± SD (Mg ha−1) |
Above | 0.20 | 0.69 | 0.56 | 0.42 | 4.00 ± 1.5 | 0.20 | 0.77 | 0.81 | 0.76 | 7.23 ± 0.5 | 0.25 | 0.37 | 0.50 | 0.21 | 3.68 ± 0.8 | 0.22 | 0.67 | 0.83 | 0.55 | 8.18 ± 0.6 |
Ankor | 0.20 | 0.81 | 0.69 | 0.64 | 4.63 ± 0.4 | 0.18 | 0.78 | 0.78 | 0.77 | 6.25 ± 0.3 | 0.20 | 0.30 | 0.39 | 0.22 | 3.66 ± 1.6 | 0.19 | 0.54 | 0.81 | 0.71 | 7.57 ± 1.0 |
Arlin | 0.18 | 0.69 | 0.46 | 0.37 | 3.65 ± 1.4 | 0.20 | 0.83 | 0.77 | 0.73 | 7.84 ± 0.9 | 0.22 | 0.35 | 0.42 | 0.20 | 3.31 ± 1.2 | 0.19 | 0.55 | 0.76 | 0.59 | 7.50 ± 1.9 |
Avalanche | 0.21 | 0.84 | 0.71 | 0.59 | 5.31 ± 1.1 | 0.20 | 0.87 | 0.81 | 0.79 | 7.00 ± 0.7 | 0.22 | 0.33 | 0.41 | 0.20 | 3.09 ± 1.2 | 0.24 | 0.60 | 0.79 | 0.58 | 7.49 ± 1.6 |
Baca | 0.17 | 0.77 | 0.59 | 0.47 | 3.31 ± 1.8 | 0.20 | 0.88 | 0.81 | 0.81 | 6.63 ± 0.9 | 0.23 | 0.37 | 0.50 | 0.24 | 3.29 ± 1.0 | 0.24 | 0.70 | 0.84 | 0.64 | 6.62 ± 1.2 |
Bill Brown | 0.19 | 0.70 | 0.66 | 0.59 | 4.91 ± 1.0 | 0.21 | 0.87 | 0.81 | 0.82 | 7.48 ± 1.1 | 0.22 | 0.36 | 0.46 | 0.22 | 3.92 ± 1.7 | 0.21 | 0.59 | 0.83 | 0.71 | 8.09 ± 1.1 |
Bond CL | 0.18 | 0.84 | 0.51 | 0.33 | 2.90 ± 0.9 | 0.19 | 0.80 | 0.79 | 0.75 | 7.14 ± 0.7 | 0.20 | 0.30 | 0.41 | 0.20 | 3.81 ± 1.1 | 0.19 | 0.56 | 0.82 | 0.65 | 8.15 ± 0.9 |
CO940610 | 0.20 | 0.83 | 0.68 | 0.58 | 4.76 ± 1.1 | 0.20 | 0.77 | 0.79 | 0.77 | 7.63 ± 0.1 | 0.23 | 0.38 | 0.51 | 0.24 | 3.80 ± 1.1 | 0.21 | 0.58 | 0.78 | 0.62 | 7.73 ± 0.4 |
Danby | 0.17 | 0.83 | 0.63 | 0.51 | 3.69 ± 0.6 | 0.20 | 0.82 | 0.80 | 0.79 | 8.10 ± 0.9 | 0.24 | 0.36 | 0.48 | 0.26 | 4.04 ± 0.5 | 0.19 | 0.56 | 0.84 | 0.73 | 7.73 ± 1.0 |
Good Streak | 0.17 | 0.73 | 0.64 | 0.58 | 3.23 ± 1.1 | 0.19 | 0.85 | 0.80 | 0.80 | 5.99 ± 0.7 | 0.21 | 0.26 | 0.40 | 0.27 | 3.45 ± 0.9 | 0.20 | 0.55 | 0.83 | 0.66 | 7.38 ± 1.1 |
Hatcher | 0.19 | 0.84 | 0.64 | 0.50 | 3.87 ± 0.4 | 0.19 | 0.81 | 0.79 | 0.76 | 6.93 ± 2.0 | 0.21 | 0.31 | 0.48 | 0.26 | 3.42 ± 0.5 | 0.18 | 0.58 | 0.84 | 0.73 | 8.14 ± 0.9 |
Jagalene | 0.18 | 0.82 | 0.64 | 0.50 | 3.57 ± 1.4 | 0.20 | 0.87 | 0.79 | 0.78 | 6.58 ± 1.0 | 0.23 | 0.35 | 0.39 | 0.22 | 3.42 ± 0.5 | 0.21 | 0.59 | 0.81 | 0.69 | 7.76 ± 0.6 |
Jagger | 0.18 | 0.75 | 0.64 | 0.52 | 3.92 ± 2.0 | 0.19 | 0.80 | 0.82 | 0.80 | 7.00 ± 1.4 | 0.22 | 0.30 | 0.40 | 0.20 | 3.02 ± 1.4 | 0.20 | 0.52 | 0.77 | 0.70 | 7.96 ± 1.5 |
Keota | 0.16 | 0.68 | 0.48 | 0.40 | 2.64 ± 1.0 | 0.21 | 0.77 | 0.77 | 0.76 | 7.87 ± 0.6 | 0.21 | 0.30 | 0.40 | 0.23 | 3.36 ± 1.0 | 0.21 | 0.62 | 0.78 | 0.65 | 8.22 ± 1.3 |
NuDakota | 0.16 | 0.80 | 0.55 | 0.45 | 3.04 ± 1.2 | 0.20 | 0.74 | 0.81 | 0.77 | 7.37 ± 0.3 | 0.21 | 0.28 | 0.43 | 0.23 | 3.91 ± 0.8 | 0.21 | 0.64 | 0.81 | 0.65 | 8.92 ± 0.2 |
Platte | 0.18 | 0.69 | 0.55 | 0.43 | 2.99 ± 1.2 | 0.19 | 0.81 | 0.81 | 0.73 | 7.01 ± 0.9 | 0.22 | 0.33 | 0.43 | 0.20 | 3.28 ± 1.1 | 0.19 | 0.52 | 0.81 | 0.68 | 7.66 ± 0.8 |
Prairie Red | 0.18 | 0.77 | 0.62 | 0.52 | 4.29 ± 0.3 | 0.19 | 0.82 | 0.78 | 0.74 | 7.35 ± 0.7 | 0.22 | 0.28 | 0.39 | 0.20 | 3.13 ± 0.9 | 0.20 | 0.62 | 0.79 | 0.70 | 8.30 ± 0.9 |
Prowers 99 | 0.20 | 0.77 | 0.73 | 0.62 | 4.50 ± 1.3 | 0.22 | 0.83 | 0.81 | 0.83 | 6.86 ± 1.3 | 0.21 | 0.28 | 0.33 | 0.24 | 2.89 ± 0.9 | 0.22 | 0.55 | 0.84 | 0.64 | 6.78 ± 1.2 |
Ripper | 0.22 | 0.79 | 0.66 | 0.56 | 5.46 ± 0.8 | 0.20 | 0.86 | 0.81 | 0.76 | 7.02 ± 1.0 | 0.26 | 0.37 | 0.45 | 0.21 | 3.52 ± 0.8 | 0.24 | 0.69 | 0.82 | 0.60 | 9.21 ± 1.7 |
RonL | 0.18 | 0.83 | 0.60 | 0.49 | 3.64 ± 2.4 | 0.20 | 0.83 | 0.82 | 0.79 | 7.51 ± 1.7 | 0.21 | 0.26 | 0.33 | 0.22 | 3.06 ± 0.7 | 0.22 | 0.61 | 0.79 | 0.68 | 8.50 ± 1.2 |
Sandy | 0.18 | 0.84 | 0.66 | 0.61 | 4.03 ± 0.8 | 0.19 | 0.88 | 0.82 | 0.78 | 7.12 ± 0.3 | 0.22 | 0.33 | 0.46 | 0.24 | 3.60 ± 0.9 | 0.20 | 0.62 | 0.84 | 0.65 | 7.32 ± 1.3 |
Snowmass | 0.18 | 0.74 | 0.63 | 0.61 | 4.54 ± 1.5 | 0.19 | 0.88 | 0.79 | 0.81 | 7.75 ± 0.4 | 0.22 | 0.31 | 0.44 | 0.21 | 3.42 ± 0.8 | 0.21 | 0.67 | 0.82 | 0.59 | 7.54 ± 1.0 |
TAM 112 | 0.19 | 0.82 | 0.59 | 0.54 | 4.20 ± 0.6 | 0.20 | 0.86 | 0.79 | 0.75 | 7.02 ± 1.5 | 0.23 | 0.35 | 0.45 | 0.26 | 4.27 ± 0.9 | 0.23 | 0.69 | 0.80 | 0.68 | 9.12 ± 0.9 |
Yuma | 0.19 | 0.72 | 0.64 | 0.52 | 4.39 ± 0.8 | 0.20 | 0.76 | 0.77 | 0.76 | 6.08 ± 0.6 | 0.21 | 0.35 | 0.43 | 0.20 | 3.85 ± 1.4 | 0.20 | 0.66 | 0.83 | 0.68 | 8.63 ± 1.6 |
---------NDVI Class-------- | ||||
---|---|---|---|---|
Yield Class | Low | Medium | High | % Accuracy |
Low | 203 | 168 | 100 | 43.1 |
Medium | 137 | 204 | 139 | 42.5 |
High | 28 | 94 | 127 | 51 |
% accuracy | 55.2 | 43.8 | 34.7 | 44.5 † |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naser, M.A.; Khosla, R.; Longchamps, L.; Dahal, S. Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions. Remote Sens. 2020, 12, 824. https://doi.org/10.3390/rs12050824
Naser MA, Khosla R, Longchamps L, Dahal S. Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions. Remote Sensing. 2020; 12(5):824. https://doi.org/10.3390/rs12050824
Chicago/Turabian StyleNaser, Mohammed A., Raj Khosla, Louis Longchamps, and Subash Dahal. 2020. "Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions" Remote Sensing 12, no. 5: 824. https://doi.org/10.3390/rs12050824
APA StyleNaser, M. A., Khosla, R., Longchamps, L., & Dahal, S. (2020). Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions. Remote Sensing, 12(5), 824. https://doi.org/10.3390/rs12050824