Spatial and Temporal Dynamics of Urban Wetlands in an Indian Megacity over the Past 50 Years
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Sets and Preprocessing
2.3. Classification of Corona and Landsat Images
2.4. Post-Processing and Accuracy Assessment
2.5. Delineation of Potential Wetland Areas (PWA)
2.6. Characterization of the Rural–Urban Gradient and Associated Landscape Morphologies
3. Results
3.1. Land Cover Changes in Bengaluru Urban
3.2. Dynamics of Lake Wetlands
3.3. Changes within PWA along the Rural–Urban Gradient
3.4. Changes in the Rural Urban Characteristics of PWA
4. Discussion
4.1. Land Cover Changes
4.2. Wetland Losses along the Rural–Urban Gradient and Its Drivers
4.3. Methods Used for the Identification of Wetland Changes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Accuracy Assessment
Land Cover Class | 2018 | 2014 | 2009 | 2004 | 1999 | 1993 | 1988 | 1965 | ||||||||
UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | |
Water | 90.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 77.8 | 100.0 | 100.0 | 88.9 | 100.0 |
Hydrophytic vegetation | 100.0 | 100.0 | 100.0 | 88.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 66.7 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Built-up | 100.0 | 93.1 | 95.6 | 91.7 | 95.8 | 100.0 | 100.0 | 100.0 | 84.6 | 100.0 | 81.8 | 100.0 | 66.7 | 100.0 | 100.0 | 100.0 |
Woodland | 100.0 | 71.4 | 80.0 | 85.7 | 94.1 | 88.9 | 93.8 | 93.8 | 90.0 | 100.0 | 95.8 | 88.5 | 90.0 | 90.0 | 88.9 | 88.9 |
Crop–shrub mosaic | 92.9 | 100.0 | 96.8 | 95.2 | 96.8 | 96.8 | 98.5 | 96.9 | 98.7 | 96.3 | 95.8 | 97.2 | 96.1 | 93.7 | 95.8 | 95.8 |
Barren land | 100.0 | 100.0 | 81.8 | 100.0 | 100.0 | 100.0 | 92.8 | 100.0 | 100.0 | 100.0 | 85.7 | 100.0 | 100.0 | 100.0 | 100.0 | 83.3 |
Overall accuracy (%) | 95.1 | 93.5 | 96.4 | 97.3 | 95.9 | 94.3 | 93.5 | 94.3 | ||||||||
Quantity disagreement (%) | 4.9 | 2.4 | 0.8 | 0.8 | 3.3 | 3.2 | 1.6 | 0.8 | ||||||||
Allocation disagreement (%) | 0 | 4.1 | 2.4 | 1.6 | 0.8 | 2.4 | 4.9 | 4.9 |
Error matrix for 2018 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total Area (km2) | Stratum Weight (WI) |
1 | 9 | 0 | 1 | 0 | 0 | 0 | 10 | 48.0 | 0.022 |
2 | 0 | 10 | 0 | 0 | 0 | 0 | 10 | 6.8 | 0.003 |
3 | 0 | 0 | 27 | 0 | 0 | 0 | 27 | 592.6 | 0.272 |
4 | 0 | 0 | 0 | 10 | 0 | 0 | 10 | 160.6 | 0.074 |
5 | 0 | 0 | 0 | 4 | 52 | 0 | 56 | 1222.7 | 0.560 |
6 | 0 | 0 | 1 | 0 | 0 | 9 | 10 | 151.6 | 0.069 |
SUM | 9 | 10 | 29 | 14 | 52 | 9 | 123 | 2182.34 | 1.000 |
Standard error of area estimates (km2) | 4.8 | 0.0 | 19.5 | 36.8 | 42.5 | 15.2 | |||
95% Confidence interval (km2) | 9.4 | 0.0 | 38.2 | 72.1 | 83.2 | 29.7 |
Error matrix for 2014 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total Area (km2) | Stratum Weight (WI) |
1 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 27.6 | 0.013 |
2 | 0 | 8 | 0 | 0 | 0 | 0 | 8 | 18.9 | 0.009 |
3 | 0 | 0 | 22 | 0 | 1 | 0 | 23 | 449.5 | 0.206 |
4 | 0 | 1 | 0 | 12 | 2 | 0 | 15 | 235.4 | 0.108 |
5 | 0 | 0 | 0 | 2 | 60 | 0 | 62 | 1302.4 | 0.596 |
6 | 0 | 0 | 2 | 0 | 0 | 9 | 11 | 149.0 | 0.068 |
SUM | 4 | 9 | 24 | 14 | 63 | 9 | 123 | 2182.3 | 1.000 |
Standard error of area estimates (km2) | 0.0 | 6.3 | 28.5 | 35.9 | 43.1 | 18.2 | |||
95% Confidence Interval in km2 | 0.0 | 12.3 | 56.05 | 70.4 | 84.5 | 35.6 |
Error matrix for 2009 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total area (km2) | Stratum Weight (WI) |
1 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 36.1 | 0.017 |
2 | 0 | 5 | 0 | 0 | 0 | 0 | 5 | 8.8 | 0.004 |
3 | 0 | 0 | 23 | 0 | 1 | 0 | 24 | 455.3 | 0.209 |
4 | 0 | 0 | 0 | 16 | 1 | 0 | 17 | 167.0 | 0.077 |
5 | 0 | 0 | 0 | 2 | 60 | 0 | 62 | 1412.0 | 0.647 |
6 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 103.1 | 0.047 |
SUM | 7 | 5 | 23 | 18 | 62 | 8 | 123 | 2182.3 | 1.000 |
Standard error of area estimates (km2) | 0.0 | 0.0 | 18.8 | 23.3 | 39.3 | 0.0 | |||
95% Confidence Interval in km2 | 0.0 | 0.0 | 37.2 | 45.7 | 79.7 | 0.0 |
Error matrix for 2004 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total area (km2) | Stratum Weight (WI) |
1 | 8 | 0 | 0 | 0 | 0 | 0 | 8 | 40.2 | 0.018 |
2 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 6.3 | 0.003 |
3 | 0 | 0 | 16 | 0 | 0 | 0 | 16 | 329.0 | 0.151 |
4 | 0 | 0 | 0 | 15 | 1 | 0 | 16 | 229.1 | 0.105 |
5 | 0 | 0 | 0 | 1 | 64 | 0 | 65 | 1410.3 | 0.646 |
6 | 0 | 0 | 0 | 0 | 1 | 13 | 14 | 167.4 | 0.077 |
SUM | 8 | 4 | 16 | 16 | 66 | 13 | 123 | 2182.3 | 1.000 |
Standard error of area estimates (km2) | 0.0 | 0.0 | 0.0 | 22.7 | 31.8 | 11.9 | |||
95% Confidence Interval in km2 | 0.0 | 0.0 | 0.0 | 44.6 | 62.4 | 23.4 |
Error matrix for 1999 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total area (km2) | Stratum Weight (WI) |
1 | 8 | 0 | 0 | 0 | 0 | 0 | 8 | 53.0 | 0.024 |
2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 5.0 | 0.003 |
3 | 0 | 0 | 11 | 0 | 1 | 1 | 13 | 243.4 | 0.112 |
4 | 0 | 0 | 0 | 18 | 2 | 0 | 20 | 321.9 | 0.148 |
5 | 0 | 1 | 0 | 0 | 77 | 0 | 78 | 1504.2 | 0.688 |
6 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 55.8 | 0.026 |
SUM | 8 | 3 | 11 | 18 | 80 | 2 | 123 | 2182.3 | 1.000 |
Standard error of area estimates (km2) | 0.0 | 7.6 | 25.6 | 22.2 | 36.2 | 22.5 | |||
95% Confidence Interval in km2 | 0.0 | 14.9 | 50.2 | 43.4 | 70.9 | 44.2 |
Error matrix for 1993 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total area (km2) | Stratum Weight (WI) |
1 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 42.9 | 0.020 |
2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 4.1 | 0.002 |
3 | 1 | 0 | 9 | 0 | 1 | 0 | 11 | 171.4 | 0.079 |
4 | 0 | 0 | 0 | 23 | 1 | 0 | 24 | 349.2 | 0.160 |
5 | 0 | 0 | 0 | 3 | 69 | 0 | 72 | 1595.7 | 0.731 |
6 | 1 | 0 | 0 | 0 | 0 | 6 | 7 | 19.0 | 0.009 |
SUM | 9 | 2 | 9 | 26 | 71 | 6 | 123 | 2182.3 | 1.000 |
Standard error of area estimates (km2) | 10.7 | 0.0 | 20.9 | 34.1 | 45.6 | 2.7 | |||
95% Confidence Interval in km2 | 21.0 | 0.0 | 41.0 | 66.9 | 89.4 | 5.3 |
Error matrix for 1988 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total area (km2) | Stratum Weight (WI) |
1 | 6 | 0 | 0 | 0 | 0 | 0 | 6 | 46.9 | 0.022 |
2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2.3 | 0.001 |
3 | 0 | 0 | 4 | 0 | 2 | 0 | 6 | 126.4 | 0.058 |
4 | 0 | 0 | 0 | 27 | 3 | 0 | 30 | 360.0 | 0.165 |
5 | 0 | 0 | 0 | 3 | 74 | 0 | 77 | 1628.7 | 0.747 |
6 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 16.0 | 0.007 |
SUM | 6 | 2 | 4 | 30 | 79 | 2 | 123 | 2182.3 | 1.000 |
Standard error of area estimates (km2) | 0.0 | 0.0 | 26.6 | 34.0 | 51.7 | 0.0 | |||
95% Confidence Interval in km2 | 0.0 | 0.0 | 52.2 | 66.7 | 101.3 | 0.0 |
Error matrix for 1965 | |||||||||
Classfied | 1 | 2 | 3 | 4 | 5 | 6 | SUM | Total area (km2) | Stratum Weight (WI) |
1 | 8 | 0 | 0 | 0 | 0 | 1 | 9 | 62.2 | 0.029 |
2 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 2.1 | 0.001 |
3 | 0 | 0 | 6 | 0 | 0 | 0 | 6 | 52.0 | 0.024 |
4 | 0 | 0 | 0 | 24 | 3 | 0 | 27 | 328.3 | 0.150 |
5 | 0 | 0 | 0 | 3 | 69 | 0 | 72 | 1590.0 | 0.729 |
6 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 147.7 | 0.068 |
SUM | 8 | 4 | 6 | 27 | 72 | 6 | 123 | 2182.3 | 1.000 |
Standard error of area estimates (km2) | 6.9 | 0.0 | 0.0 | 34.8 | 45.7 | 11.0 | |||
95% Confidence Interval in km2 | 13.5 | 0.0 | 0.0 | 68.1 | 89.6 | 21.5 |
Appendix B. Land Cover Maps from 2018, 2014, 2009, 2004, 1999, 1993, 1988 and 1965 for the District Bengaluru Urban, S-India
Appendix C. Land Cover Changes (Area in km2 and Proportion in %) from 1965 to 2018 in Greater Bangalore, S-India
Year | Water | Built-up | Woodland | Crop–shrub mosaic | Barren land | Hydrophytic vegetation | ||||||
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
1965 | 20.8 | 2.9 | 51.2 | 7.3 | 85.5 | 12.1 | 481.2 | 68.2 | 67.8 | 9.6 | 1.1 | 0.2 |
1988 | 15.7 | 2.2 | 112.3 | 15.9 | 106.2 | 15.0 | 463.3 | 65.8 | 7.7 | 1.1 | 1.9 | 0.3 |
1993 | 17.8 | 2.5 | 146.0 | 20.7 | 94.8 | 13.4 | 442.7 | 62.7 | 5.1 | 0.7 | 3.4 | 0.5 |
1999 | 14.8 | 2.1 | 214.7 | 30.4 | 91.0 | 12.9 | 356.2 | 50.4 | 24.9 | 3.5 | 4.7 | 0.7 |
2004 | 14.1 | 2.0 | 287.6 | 40.7 | 58.3 | 8.3 | 296.1 | 41.9 | 44.9 | 6.4 | 5.2 | 0.7 |
2009 | 11.6 | 1.6 | 372.1 | 52.4 | 51.3 | 7.3 | 229.8 | 32.5 | 34.7 | 4.9 | 6.8 | 0.9 |
2014 | 10.6 | 1.5 | 372.5 | 52.7 | 60.9 | 8.6 | 178.7 | 25.3 | 39.2 | 5.6 | 10.4 | 1.5 |
2018 | 12.5 | 1.8 | 446.3 | 63.2 | 55.0 | 7.8 | 161.1 | 22.8 | 26.5 | 3.8 | 4.7 | 0.7 |
References
- Gibbs, J.P. Wetland Loss and Biodiversity Conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Bassi, N.; Kumar, M.D.; Sharma, A.; Pardha-Saradhi, P. Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. J. Hydrol. 2014, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Keddy, P. Wetland Ecology: Principles and Conservation, 2nd ed.; 5th printing ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Lang, M.W.; Tiner, R.W.; Klemas, V. Remote Sensing of Wetlands: Applications and Advances; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands; John Wiley & Sons Ltd.: Chichester, UK, 2015. [Google Scholar]
- Ramsar Convention on Wetlands. Ramsar Fact Sheet 3 Wetlands: A Global Disappearing Act. 2015. Available online: https://www.ramsar.org/sites/default/files/documents/library/factsheet3_global_disappearing_act_0.pdf (accessed on 11 January 2019).
- Li, Y.; Zhu, X.; Sun, X.; Wang, F. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: A case study of Lianyungang, China. Landsc. Urban Plan. 2010, 94, 218–227. [Google Scholar] [CrossRef]
- He, C.; Tian, J.; Shi, P.; Hu, D. Simulation of the spatial stress due to urban expansion on the wetlands in Beijing, China using a GIS-based assessment model. Landsc. Urban Plan. 2011, 101, 269–277. [Google Scholar] [CrossRef]
- Nagendra, H.; Gopal, D. Tree diversity, distribution, history and change in urban parks: Studies in Bangalore, India. Urban Ecosyst. 2011, 14, 211–223. [Google Scholar] [CrossRef]
- Hettiarachchi, M.; Morrison, T.H.; Wickramsinghe, D.; Mapa, R.; Alwis, A.; de McAlpine, C.A. The eco-social transformation of urban wetlands: A case study of Colombo, Sri Lanka. Landsc. Urban Plan. 2014, 132, 55–68. [Google Scholar] [CrossRef]
- Burgin, S.; Franklin, M.J.M.; Hull, L. Wetland losses in the transition to urbanization: A case study from Western Sydney, Australia. Wetlands 2016, 36, 985–994. [Google Scholar] [CrossRef]
- Iniesta-Arandia, I.; García-Llorente, M.; Aguilera, P.A.; Montes, C.; Martín-López, B. Socio-cultural valuation of ecosystem services: Uncovering the links between values, drivers of change, and human well-being. Ecol. Econ. 2014, 108, 36–48. [Google Scholar] [CrossRef]
- Andersson, E.; Nykvist, B.; Malinga, R.; Jaramillo, F.; Lindborg, R. A social-ecological analysis of ecosystem services in two different farming systems. AMBIO 2015, 44 (Suppl. S1), 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kansiime, F.; Kateyo, E.; Oryem-Origa, H.; Mucunguzi, P. Nutrient status and retention in pristine and disturbed wetlands in Uganda: Management implications. Wetl. Ecol. Manag. 2007, 15, 453–467. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Exotic invasive species in urban wetlands: Environmental correlates and implications for wetland management. J. Appl. Ecol. 2008, 45, 1160–1169. [Google Scholar] [CrossRef]
- Hettiarachchi, M.; Morrison, T.H.; McAlpine, C. Forty-three years of Ramsar and urban wetlands. Glob. Environ. Chang. 2015, 32, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Xian, G.; Crane, M.; Su, J. An analysis of urban development and its environmental impact on the Tampa Bay watershed. J. Environ. Manag. 2007, 85, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Smardon, R. Sustaining the World’s Wetlands; Springer US: New York, NY, USA, 2009. [Google Scholar]
- Marcuse, P.; van Kempen, R. Conclusion: A Changed Spatial Order. In Globalizing Cities: A New Spatial Order; Marcuse, P., van Kempen, R., Eds.; Blackwell Publishers: Oxford, UK; Malden, MA, USA, 2000; pp. 249–275. [Google Scholar]
- Nagendra, H.; Bai, X.; Brondizio, E.S. The urban south and the predicament of global sustainability. Nat. Sustain. 2018, 1, 341–349. [Google Scholar] [CrossRef]
- Dasgupta, K. A city divided? Planning and urban sprawl in the eastern fringes of Calcutta. In Indian Cities in Transition; Shaw, A., Ed.; Orient Longman: Chennai, India, 2007. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Taubenböck, H.; Wegmann, M.; Roth, A.; Mehl, H.; Dech, S. Urbanization in India—Spatiotemporal analysis using remote sensing data. Comput. Environ. Urban Syst. 2009, 33, 179–188. [Google Scholar] [CrossRef]
- Kumar, M.; Mukherjee, N.; Sharma, G.P.; Raghubanshi, A.S. Land use patterns and urbanization in the holy city of Varanasi, India: A scenario. Environ. Monit. Assess. 2010, 167, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Da Cunha, D. Deccan Traverses: The Making of Banglalore’s Terrain; Rupa & Co, Rupa Publications India Pvt., Ltd.: Kolkata, India, 2006; p. 231. ISBN 9788129108524. [Google Scholar]
- Sudha, P.; Ravindranath, N.H. A study of Bangalore urban forest. Landsc. Urban Plan. 2000, 47, 47–63. [Google Scholar] [CrossRef]
- Sudhira, H.S.; Nagendra, H. Local Assessment of Bangalore: Graying and Greening in Bangalore—Impacts of Urbanization on Ecosystems, Ecosystem Services and Biodiversity; Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., Wilkinson, C., et al., Eds.; Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer: Dordrecht, The Netherlands, 2013; pp. 75–91. [Google Scholar]
- Awuah, K.T.; Nölke, N.; Freudenberg, M.; Diwakara, B.N.; Tewari, V.P.; Kleinn, C. Spatial resolution and landscape structure along an urban-rural gradient: Do they relate to remote sensing classification accuracy?—A case study in the megacity of Bengaluru, India. Remote Sens. Appl. Soc. Environ. 2018, 12, 89–98. [Google Scholar] [CrossRef]
- Nagendra, H.; Nagendran, S.; Paul, S.; Pareeth, S. Graying, greening and fragmentation in the rapidly expanding Indian city of Bangalore. Landsc. Urban Plan. 2012, 105, 400–406. [Google Scholar] [CrossRef]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- Rebelo, L.-M.; Finlayson, C.M.; Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis. J. Environ. Manag. 2009, 9, 2144–2153. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Chen, L.; Jin, Z.; Michishita, R.; Cai, J.; Yue, T.; Chen, B.; Xu, B. Dynamic monitoring of wetland cover changes using time-series remote sensing imagery. Ecol. Inform. 2014, 24, 17–26. [Google Scholar] [CrossRef]
- Lv, J.; Jiang, W.; Wang, W.; Wu, Z.; Liu, Y.; Wang, X.; Li, Z. Wetland loss identification and evaluation based on landscape and remote sensing indices in Xiong’an New Area. Remote Sens. 2019, 11, 2834. [Google Scholar] [CrossRef] [Green Version]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Anenkhonov, O.A.; Chepinoga, V.V.; Autrey, B.C.; Liu, H. Comparing pixel- and object-based approaches in effectively classifying wetland-dominated landscapes. Remote Sens. 2018, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Niering, W.A. Wetlands (Audubon Society Nature Guides); A Chanticleer Press, Ed.; National Audubon Society: New York, NY, USA, 1985; ISBN 0394731476. [Google Scholar]
- Wu, Q. GIS and Remote Sensing Applications in Wetland Mapping and Monitoring. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier Science: Saint Louis, MI, USA, 2017; pp. 140–157. [Google Scholar]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Wang, X.; Ning, L.; Yu, J.; Xiao, R.; Li, T. Changes of urban wetland landscape pattern and impacts of urbanization on wetland in Wuhan City. Chin. Geogr. Sci. 2008, 18, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Gautam, V.K.; Gaurav, P.K.; Murugan, P.; Annadurai, M. Assessment of surface water dynamics in Bangalore using WRI, NDWI, MNDWI, supervised classification and K-T transformation. Aquat. Procedia 2015, 4, 739–746. [Google Scholar] [CrossRef]
- Wang, X.; Ling, F.; Yao, H.; Liu, Y.; Xu, S. Unsupervised sub-pixel water body mapping with Sentinel-3 OLCI image. Remote Sens. 2019, 11, 327. [Google Scholar] [CrossRef] [Green Version]
- Acharya, T.D.A.; Subedi, A.; Lee, D.H. Evaluation of Machine Learning Algorithms for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2019, 19, 2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, F.; Wang, C.; Dong, D.; Luo, J.; Shen, Z.; Yang, K. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery. Remote Sens. 2015, 7, 12336–12355. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Feng, M.; Zhu, Y.; Lu, N.; Huang, J.; Xiao, T. An automated method for extracting rivers and lakes from Landsat imagery. Remote Sens. 2014, 6, 5067–5089. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Corcoran, J.; Rampi, L.; Pelletier, K. Theory and Applications of Object-Based Image Analysis and Emerging Methods in Wetland Mapping. In Remote sensing of Wetlands: Applications and Advances; Tiner, R.W., Lang, M., Klemas, V., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 175–194. [Google Scholar] [CrossRef]
- Mui, A.; He, Y.; Weng, Q. An object-based approach to delineate wetlands across landscapes of varied disturbance with high spatial resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2015, 109, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Liu, J.; Zheng, G.; Li, Y.; Xie, B. Quantitative assessment of urban wetland dynamics using high spatial resolution satellite imagery between 2000 and 2013. Nat. Sci. Rep. 2018, 8, 7409. [Google Scholar] [CrossRef]
- D’Souza, R. A Study on Bellandur Tank and Changes Due to Urbanisation; A CASUMM Publication: Bangalore, India, 2007. [Google Scholar]
- D’Souza, R.; Nagendra, H. Changes in public commons as a consequence of urbanization: The Agara lake in Bangalore, India. Environ. Manag. 2011, 47, 840–850. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Kumar, U. Wetlands of Greater Bangalore, India: Automatic Delineation through Pattern Classifiers. Electron. Green J. 2008, 1. Available online: https://escholarship.org/uc/item/3dp0q8f2 (accessed on 15 January 2019).
- Bharath, H.A.; Vinay, S.; Chandan, M.C.; Gouri, B.A.; Ramachandra, T.V. Green to gray: Silicon Valley of India. J. Environ. Manag. 2018, 206, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Nair, J. The Promise of the Metropolis: Bangalore’s Twentieth Century; Oxford Univ. Press: New Delhi, India, 2005. [Google Scholar]
- Sudhira, H.S.; Ramachandra, T.V.; Subrahmanya, M.B. Bangalore. Cities 2007, 24, 379–390. [Google Scholar] [CrossRef]
- Srinivasan, V.; Thompson, S.; Madhyastha, K.; Penny, G.; Jeremiah, K.; Lele, S. Why is the Arkavathy River drying? A multiple-hypothesis approach in a data-scarce region. Hydrol. Earth Syst. Sci. 2015, 19, 1905–1917. [Google Scholar] [CrossRef] [Green Version]
- Prasad, C.S.; Anandan, S.; Gowda, N.K.S.; Schlecht, E.; Buerkert, A. Managing nutrient flows in Indian urban and peri-urban livestock systems. Nutr. Cycl. Agroecosyst. 2019, 115, 159–172. [Google Scholar] [CrossRef]
- Pani, N. Resource cities across phases of globalization: Evidence from Bangalore. Habitat Int. 2009, 33, 114–119. [Google Scholar] [CrossRef]
- Smitha, K.C. Urban Governance and Bangalore Water Supply & Sewerage Board (BWSSB); Institute of Social and Economic Change: Bangalore, India, 2006. [Google Scholar]
- CLC (Centre for Lake Conservation). EMPRI (Environmental Management and Policy Research Institute) Draft Report on Inventorisation of Water Bodies in Bengaluru Metropolitan Area (BMA). Department of Forest, Ecology and Environment, Government of Karnataka, India. Available online: http: //www.nrs.fs.fed.us/pubs/gtr/gtr_nc245.pdf (accessed on 11 November 2018).
- BBMP. Namma Bangalore Nisarga: An Action Plan for Development of Bangalore’s Lakes; Bruhat Bangalore Mahanagara Palike (BBMP): Bangalore, India, 2010. [Google Scholar]
- Nagendra, H.; Gopal, D. Street trees in Bangalore: Density, diversity, composition and distribution. Urban For. Urban Green. 2010, 9, 129–137. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. Image-based atmospheric corrections-revisited and improved photogrammetric engineering and remote sensing. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Dashora, A.; Lohani, B.; Malik, J.N. A repository of earth resource information—CORONA satellite programme. Curr. Sci. 2007, 92, 926–932. [Google Scholar]
- Van, T.T.; Duong, P.; Nasahara, K. How does land use/land cover map’s accuracy depend on number of classification classes? Sci. Online Lett. Atmos. 2019, 15, 28–31. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. Land Use and Land Cover Classification Systems for Use with Remote Sensor Data; Professional Paper 964; Geological Service: Washington, DC, USA, 1976. [Google Scholar]
- Cadenasso, M.L.; Pickett, S.T.A.; Grove, J.M. Dimensions of ecosystem complexity: Heterogeneity, connectivity, and history. Ecol. Complex. 2006, 3, 1–12. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Hawken, S.; Metternicht, G.; Chang, C.W.; Liew, S.C.; Gupta, A. Remote Sensing of Urban Ecological Infrastructure in Desakota Environments: A review of current approaches. In Proceedings of the 35th Asian Conference on Remote Sensing (ACRS 2014), Nay Pyi Taw, Myanmar; Available online: https://doi.org/10.13140/2.1.3202.9768 (accessed on 10 October 2019).
- Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 1975, 21, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Corredor, X. AcAtaMa QGis Plugin (Version 19.11.21). SMByC-IDEAM. Available online: https: //smbyc.bitbucket.io/qgisplugins/acatama (accessed on 20 November 2019).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. Available online: http://qgis.org (accessed on 6 June 2018).
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Hoffmann, E.; Jose, M.; Nölke, N.; Möckel, T. Construction and use of a simple index of urbanisation in the rural–urban interface of Bangalore, India. Sustainability 2017, 9, 2146. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, J. Agriculture along the Urban–Rural Continuum: A GIS-based Analysis of Spatiotemporal Dynamics in Two Medium-Sized AFRICAN cities. Freibg. Geogr. Hefte 2013, 70. Available online: https://www.geographie.uni-freiburg.de/publikationen/abstracts/fgh70-en (accessed on 10 January 2019).
- Schneider, A.; Woodcock, C.E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Thapa, R.; Murayama, Y. Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: Remote sensing and spatial metrics approaches. Remote Sens. 2009, 1, 534–556. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Li, H.; Wang, R.; Paulussen, J.; He, Y.; Wang, M.; Wang, B.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef]
- Vaz, E. Managing urban coastal areas through landscape metrics: An assessment of Mumbai’s mangrove system. Ocean Coast. Manag. 2014, 98, 27–37. [Google Scholar] [CrossRef]
- Chandrashekar, J.S.; Babu, K.L.; Somashekar, R.K. Impact of urbanization on Bellandur Lake, Bangalore—A case study. J. Environ. Biol. 2003, 24, 223–227. [Google Scholar] [PubMed]
- Jumbe, A.S.; Nandini, N. Heavy metals analysis and sediment quality values in urban lakes. Am. J. Environ. Sci. 2009, 5, 678–687. [Google Scholar] [CrossRef]
- National Geographic. Why This Lake Keeps Catching on Fire. Available online: https://news.nationalgeographic.com/2018/02/bangalore-india-lake-bellandur-catches-fire-pollution/ (accessed on 2 February 2019).
- Buchanan, F. A Journey from Madras through the Countries of Mysore, Canara, and Malabar; Cambridge University Press: New-York, NY, USA, 2011. [Google Scholar]
- Murphy, A.; ·Johan, P.; Enqvist, J.P.; Tengö, M. Place-making to transform urban social–ecological systems: Insights from the stewardship of urban lakes in Bangalore, India. Sustain. Sci. 2019, 14, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Sudhira, H.S.; Katti, M.; Schewenius, M. Sub-regional Assessment of India: Effects of Urbanization on Land Use, Biodiversity and Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., Wilkinson, C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 65–74. [Google Scholar]
- Baud, I.S.A.; de Wit, J. New Forms of Urban Governance in India: Shifts, Models, Networks and Contestations; SAGE Publications: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Singh, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Ruelland, D.; Tribotté, A.; Puech, C.; Dieulin, C. Comparison of methods for LUCC monitoring over 50 years from aerial photographs and satellite images in a Sahelian catchment. Int. J. Remote Sens. 2011, 32, 1747–1777. [Google Scholar] [CrossRef]
- Vermaat, J.E.; Goosen, H.; Omtzigt, N. Do biodiversity patterns in Dutch wetland complexes relate to variation in urbanisation, intensity of agricultural land use or fragmentation. In Biodiversity and Conservation in Europe; Hawksworth, D.L., Bull, A.T., Eds.; Springer: Dordrecht, The Netherland, 2007; pp. 343–353. [Google Scholar]
Satellite (Sensor) | Date of Acquisition | Spectral and Spatial Resolution (m) |
---|---|---|
Corona KH-4A | 10.10.1965 | Panchromatic; 2.75 |
Landsat-5 (TM) | 19.01.1988 | Band 1-5,7; 28.5 |
Landsat-5 (TM) | 16.01.1993 | Band 1-5,7; 28.5 |
Landsat-5 (TM) | 02.02.1999 | Band 1-5,7; 28.5 |
Landsat-5 (TM) | 16.12.2004 | Band 1-5,7; 28.5 |
Landsat-5 (TM) | 12.01.2009 | Band 1-5,7; 28.5 |
Landsat-8 (OLI TIRS) | 10.01.2014 | Band 2-7; 28.5 |
Landsat-8 (OLI TIRS) | 21.01.2018 | Band 2-7; 28.5 |
Year | Water & Hydro. Veg. | Built-up | Woodland | Crop–shrub Mosaic | Barren Land | |
---|---|---|---|---|---|---|
1965 | Area (km2) | 64.3 | 52.0 | 328.3 | 1590 | 147.7 |
SE (km2) | 6.9 | 0.0 | 0.0 | 34.8 | 11.0 | |
1988 | Area (km2) | 51.2 | 126.4 | 360.0 | 1628.7 | 16.0 |
SE (km2) | 0.0 | 26.6 | 34.0 | 51.7 | 0.0 | |
Change (%) | −0.9 | 6.2 | 0.4 | 0.1 | −3.9 | |
1993 | Area (km2) | 47.0 | 171.4 | 349.2 | 1595.7 | 19.0 |
SE (km2) | 10.7 | 20.9 | 34.1 | 45.6 | 2.7 | |
Change (%) | −1.6 | 7.1 | −0.6 | −0.4 | 3.8 | |
1999 | Area km2 | 57.0 | 243.4 | 321.9 | 1504.2 | 55.8 |
SE (km2) | 7.6 | 25.6 | 22.2 | 36.2 | 22.5 | |
Change (%) | 3.5 | 7.0 | −1.3 | −1.0 | 32.3 | |
2004 | Area km2 | 46.5 | 329.0 | 229.1 | 1410.3 | 167.4 |
SE (km2) | 0.0 | 0.0 | 22.7 | 31.8 | 11.9 | |
Change (%) | −3.7 | 7.0 | −5.8 | −1.2 | 40.0 | |
2009 | Area km2 | 44.9 | 455.3 | 167.0 | 1412.0 | 103.1 |
SE (km2) | 0.0 | 18.8 | 23.3 | 39.3 | 0.0 | |
Change (%) | −0.7 | 7.7 | −5.4 | 0.0 | −7.7 | |
2014 | Area km2 | 46.1 | 449.5 | 235.4 | 1302.4 | 149.0 |
SE (km2) | 6.3 | 28.5 | 35.9 | 43.1 | 18.2 | |
Change (%) | 0.5 | -0.3 | 8.2 | −1.6 | 8.9 | |
2018 | Area km2 | 54.8 | 592.6 | 160.6 | 1222.7 | 151.6 |
SE (km2) | 4.8 | 19.5 | 36.8 | 42.5 | 15.2 | |
Change (%) | 4.8 | 8.0 | −7.9 | −1.5 | 0.4 | |
1965 to 2018 | Total Change (%) | −14.8 | 1039.0 | −51.1 | −23.1 | 2.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinkmann, K.; Hoffmann, E.; Buerkert, A. Spatial and Temporal Dynamics of Urban Wetlands in an Indian Megacity over the Past 50 Years. Remote Sens. 2020, 12, 662. https://doi.org/10.3390/rs12040662
Brinkmann K, Hoffmann E, Buerkert A. Spatial and Temporal Dynamics of Urban Wetlands in an Indian Megacity over the Past 50 Years. Remote Sensing. 2020; 12(4):662. https://doi.org/10.3390/rs12040662
Chicago/Turabian StyleBrinkmann, Katja, Ellen Hoffmann, and Andreas Buerkert. 2020. "Spatial and Temporal Dynamics of Urban Wetlands in an Indian Megacity over the Past 50 Years" Remote Sensing 12, no. 4: 662. https://doi.org/10.3390/rs12040662
APA StyleBrinkmann, K., Hoffmann, E., & Buerkert, A. (2020). Spatial and Temporal Dynamics of Urban Wetlands in an Indian Megacity over the Past 50 Years. Remote Sensing, 12(4), 662. https://doi.org/10.3390/rs12040662