Monitoring Mega-Crown Leaf Turnover from Space
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Ground Observations of Moabi Phenology at Lopé NP
2.1.2. Satellite Observations of Moabi Phenology at Lopé NP
2.2. Analyses
- Model 1: Leaf senescence and loss event ~ VV (canopy) + (1|TreeID) + (1|Year)
- Model 2: Leaf senescence and loss event ~ VV (normalised canopy) + (1|TreeID) + (1|Year)
- Model 3: Leaf senescence and loss event ~ VH (canopy) + (1|TreeID) + (1|Year)
- Model 4: Leaf senescence and loss event ~ VH (normalised canopy) + (1|TreeID) + (1|Year)
- Model 5: Leaf senescence and loss event ~ NDVI (canopy) + (1|TreeID) + (1|Year)
- Model 6: Leaf senescence and loss event ~ NDVI (normalised canopy) + (1|TreeID) + (1|Year)
- Model 7: Leaf senescence and loss event ~ GLI (canopy) + (1|TreeID) + (1|Year)
- Model 8: Leaf senescence and loss event ~ GLI (normalised canopy) + (1|TreeID) + (1|Year)
- Model 9: Leaf renewal event ~ NDVI (canopy) + (1|TreeID) + (1|Year)
- Model 10: Leaf renewal event ~ NDVI (normalised canopy) + (1|TreeID) + (1|Year)
- Model 11: Leaf renewal event ~ GLI (canopy) + (1|TreeID) + (1|Year)
- Model 12: Leaf renewal event ~ GLI (normalised canopy) + (1|TreeID) + (1|Year)
3. Results
3.1. Leaf Senescence and Loss
3.2. Leaf Renewal
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Abernethy, K.; Bush, E.R.; Forget, P.M.; Mendoza, I.; Morellato, L.P.C. Current issues in tropical phenology: A synthesis. Biotropica 2018, 50, 477–482. [Google Scholar] [CrossRef]
- Bonan, G.B.; Doney, S.C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 2018, 359. [Google Scholar] [CrossRef] [PubMed]
- Mitchard, E.T.A. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.A.; Exbrayat, J.F.; Van Der Velde, I.R.; Feng, L.; Williams, M. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl. Acad. Sci. USA 2016, 113, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Kobayashi, H.; Stark, S.C.; Meng, R.; Guan, K.; Tran, N.N.; Gao, S.; Yang, W.; Restrepo-Coupe, N.; Miura, T.; et al. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytol. 2018, 217, 1507–1520. [Google Scholar] [CrossRef]
- Morton, D.C.; Nagol, J.; Carabajal, C.C.; Rosette, J.; Palace, M.; Cook, B.D.; Vermote, E.F.; Harding, D.J.; North, P.R.J. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 2014, 506, 221. [Google Scholar] [CrossRef]
- Huete, A.R.; Saleska, S.R. Remote sensing of tropical forest phenology: Issues and controversies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 539–541. [Google Scholar]
- Albert, L.P.; Restrepo-Coupe, N.; Smith, M.N.; Wu, J.; Chavana-Bryant, C.; Prohaska, N.; Taylor, T.C.; Martins, G.A.; Ciais, P.; Mao, J.; et al. Cryptic phenology in plants: Case studies, implications, and recommendations. Glob. Chang. Biol. 2019, 25, 3591–3608. [Google Scholar] [CrossRef]
- Park, J.Y.; Muller-Landau, H.C.; Lichstein, J.W.; Rifai, S.W.; Dandois, J.P.; Bohlman, S.A. Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images. Remote Sens. 2019, 11, 1534. [Google Scholar] [CrossRef]
- Alberton, B.; Almeida, J.; Helm, R.; Torres, R.; da, S.; Menzel, A.; Morellato, L.P.C. Using phenological cameras to track the green up in a cerrado savanna and its on-the-ground validation. Ecol. Inform. 2014, 19, 62–70. [Google Scholar] [CrossRef]
- Nagai, S.; Ichie, T.; Yoneyama, A.; Kobayashi, H.; Inoue, T.; Ishii, R.; Suzuki, R.; Itioka, T. Usability of time-lapse digital camera images to detect characteristics of tree phenology in a tropical rainforest. Ecol. Inform. 2016, 32, 91–106. [Google Scholar] [CrossRef]
- Louppe, D. Baillonella toxisperma Pierre. [Internet] Record from PROTA4U. In PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale). 2005. Available online: https://www.prota4u.org/database/protav8.asp?h=M10,M14,M15,M16,M18,M20,M23,M25,M26,M27,M36,M5,M6,M7,M8,M9&t=moabi,Moabi&p=Baillonella+toxisperma#AdulterationsAndSubstitutes (accessed on 28 January 2020).
- Malhi, Y.; Jackson, T.; Bentley, L.P.; Lau, A.; Shenkin, A.; Herold, M.; Calders, K.; Bartholomeus, H.; Disney, M.I. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Plenderleith, K.; Brown, N. Moabi (Baillonella toxisperma). In The Key Non-Timber Forest Products of Central Africa: State of the Knowledge; Clark, L.E., Sunderland, T.C.H., Eds.; USAID, Bureau for Africa, Office of Sustainable Development: Washington, DC, USA, 2004; pp. 141–162. [Google Scholar]
- Bush, E.R. Tropical Phenology in a Time of Change. 2018. Available online: https://dspace.stir.ac.uk/handle/1893/29325#.XjpjvyMRVPZ (accessed on 27 January 2020).
- Philippon, N.; Cornu, G.; Monteil, L.; Gond, V.; Moron, V.; Pergaud, J.; Sèze, G.; Bigot, S.; Camberlin, P.; Doumenge, C.; et al. The light-deficient climates of western Central African evergreen forests. Environ. Res. Lett. 2019, 14, 034007. [Google Scholar] [CrossRef]
- Bush, E.R.; Jeffery, K.; Bunnefeld, N.; Tutin, C.; Musgrave, R.; Moussavou, G.; Mihindou, V.; Malhi, Y.; Lehmann, D.; Ndong, J.E.; et al. Ground data confirm warming and drying are at a critical level for forest survival in western equatorial Africa. PeerJ Prepr. 2019. [Google Scholar] [CrossRef]
- Tutin, C.E.G. Gorillas and their food plants in the Lope Reserve, Gabon. In Chorology, Taxonomy and Ecology of the Floras of Africa and Madagascar; Kew Publication: London, UK, 1998; pp. 227–243. [Google Scholar]
- Bush, E.R.; Abernethy, K.A.; Jeffery, K.; Tutin, C.; White, L.; Dimoto, E.; Dikangadissi, J.T.; Jump, A.S.; Bunnefeld, N. Fourier analysis to detect phenological cycles using tropical field data and simulations. Methods Ecol. Evol. 2017, 8, 530–540. [Google Scholar] [CrossRef]
- Bush, E.R.; Bunnefeld, N.; Dimoto, N.; Dikangadissi, J.T.; Jeffery, K.; Tutin, C.; White, L.; Abernethy, K.A. Towards effective monitoring of tropical phenology: Maximising returns and reducing uncertainty in long-term studies. Biotropica 2018, 50, 455–464. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006. NASA EOSDIS L. Process. DAAC 2015. Available online: http://doi.org/10.5067/MODIS/MCD15A3H.006 (accessed on 28 January 2020).
- Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; Myneni, R.B.; et al. MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document. 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 28 January 2020).
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Richardson, A.D. Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery. New Phytol. 2019, 222, 1742–1750. [Google Scholar] [CrossRef]
- Alberton, B.; Torres, S.; Cancian, L.F.; Borges, B.D.; Almeida, J.; Mariano, G.C.; Patricia, L.; Morellato, C. Introducing digital cameras to monitor plant phenology in the tropics: Applications for conservation. Perspect. Ecol. Conserv. 2017, 15, 82–90. [Google Scholar] [CrossRef]
- Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the Canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 103–112. [Google Scholar] [CrossRef]
- De Moura, Y.M.; Galvão, L.S.; Hilker, T.; Wu, J.; Saleska, S.; do Amaral, C.H.; Nelson, B.W.; Lopes, A.P.; Wiedeman, K.K.; Prohaska, N.; et al. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations. ISPRS J. Photogramm. Remote Sens. 2017, 131, 52–64. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Macfarlane, C.; Ogden, G.N. Automated estimation of foliage cover in forest understorey from digital nadir images. Methods Ecol. Evol. 2012, 3, 405–415. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sensors 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Belda, S.; De Grave, C.; Burriel, H.; Moreno, J.; Verrelst, J. Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models. Remote Sens. 2019, 11, 2418. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Proisy, C.; Mougin, E.; Dufrêne, E.; Dantec, V. Le Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations. IEEE Trans. Geosci. Remote Sens. 2000, 38, 540–552. [Google Scholar] [CrossRef]
- Tanase, M.A.; Villard, L.; Pitar, D.; Apostol, B.; Petrila, M.; Chivulescu, S.; Leca, S.; Borlaf-Mena, I.; Pascu, I.S.; Dobre, A.C.; et al. Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests. Sci. Total Environ. 2019, 689, 1104–1114. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.Ö.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 27 January 2020).
- Kellner, J.R.; Albert, L.P.; Burley, J.T.; Cushman, K.C. The case for remote sensing of individual plants. Am. J. Bot. 2019, 106, 1139–1142. [Google Scholar] [CrossRef]
Data | Obs. | Canopy Time Series | Buffer Time Series | Normalized Canopy Time Series |
---|---|---|---|---|
Sentinel-1 VV | 837 | 0.18 (0.07) | 0.22 (0.04) | –0.04 (0.07) |
Sentinel-1 VH | 837 | 0.04 (0.02) | 0.05 (0.01) | –0.01 (0.02) |
Sentinel-2 NDVI | 477 | 0.44 (0.19) | 0.43 (0.18) | 0 (0.04) |
Sentinel-2 GLI | 477 | 0.02 (0.03) | 0.01 (0.02) | 0 (0.01) |
Model | Predictor | Est. | SE | Z | P |
---|---|---|---|---|---|
1 | VV (canopy) | 0.04 | 0.15 | 0.29 | 0.77 |
2 | VV (normalized canopy) | 0.08 | 0.16 | 0.47 | 0.64 |
3 | VH (canopy) | −0.22 | 0.14 | −1.62 | 0.10 |
4 | VH (normalized canopy) | −0.14 | 0.14 | −0.98 | 0.33 |
5 | NDVI (canopy) | −0.27 | 0.15 | −1.76 | 0.08 |
6 | NDVI (normalized canopy) | −0.76 | 0.16 | −4.77 | <0.01 |
7 | GLI (canopy) | −0.37 | 0.18 | −2.01 | 0.04 |
8 | GLI (normalized canopy) | −0.56 | 0.22 | −2.58 | 0.01 |
Model | Predictor | Est. | SE | Z | P |
---|---|---|---|---|---|
9 | NDVI (canopy) | 0.27 | 0.18 | 1.50 | 0.13 |
10 | NDVI (normalized canopy) | 0.28 | 0.16 | 1.78 | 0.08 |
11 | GLI (canopy) | 0.31 | 0.16 | 1.90 | 0.06 |
12 | GLI (normalized canopy) | 0.32 | 0.15 | 2.06 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bush, E.R.; Mitchard, E.T.A.; Silva, T.S.F.; Dimoto, E.; Dimbonda, P.; Makaga, L.; Abernethy, K. Monitoring Mega-Crown Leaf Turnover from Space. Remote Sens. 2020, 12, 429. https://doi.org/10.3390/rs12030429
Bush ER, Mitchard ETA, Silva TSF, Dimoto E, Dimbonda P, Makaga L, Abernethy K. Monitoring Mega-Crown Leaf Turnover from Space. Remote Sensing. 2020; 12(3):429. https://doi.org/10.3390/rs12030429
Chicago/Turabian StyleBush, Emma R., Edward T. A. Mitchard, Thiago S. F. Silva, Edmond Dimoto, Pacôme Dimbonda, Loïc Makaga, and Katharine Abernethy. 2020. "Monitoring Mega-Crown Leaf Turnover from Space" Remote Sensing 12, no. 3: 429. https://doi.org/10.3390/rs12030429
APA StyleBush, E. R., Mitchard, E. T. A., Silva, T. S. F., Dimoto, E., Dimbonda, P., Makaga, L., & Abernethy, K. (2020). Monitoring Mega-Crown Leaf Turnover from Space. Remote Sensing, 12(3), 429. https://doi.org/10.3390/rs12030429