# Performance Evaluation of Troposphere Estimated from Galileo-Only Multi-Frequency Observations

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. GNSS Troposphere Estimation Methods

#### 2.1. Functional Model

#### 2.2. Processing Strategies

## 3. Status of Standalone Galileo Troposphere Solution

## 4. Evaluation of Troposphere Estimated from Multi-Frequency Galileo Observations

#### 4.1. Comparison of ZTD from the IF and the RAW Model

#### 4.2. Comparison of Tropospheric Delay from the GPS-Only and Galileo-Only Solutions

#### 4.3. Multi-Frequency Troposphere Solutions

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Wilgan, K.; Geiger, A. High-resolution models of tropospheric delays and refractivity based on GNSS and numerical weather prediction data for alpine regions in Switzerland. J. Geod.
**2019**, 93, 819–835. [Google Scholar] [CrossRef] [Green Version] - Hadas, T.; Kaplon, J.; Bosy, J.; Sierny, J.; Wilgan, K. Near-real-time regional troposphere models for the GNSS precise point positioning technique. Meas. Sci. Technol.
**2013**, 24, 055003. [Google Scholar] [CrossRef] - Shi, J.; Xu, C.; Guo, J.; Yang, G. Local troposphere augmentation for real-time precise point positioning. Earth Planets Space
**2014**, 66, 1–13. [Google Scholar] [CrossRef] [Green Version] - De Oliveira, P.; Morel, L.; Fund, F.; Legros, R.; Monico, J.; Durand, S.; Durand, F. Modeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK. GPS Solut.
**2017**, 21, 237–250. [Google Scholar] [CrossRef] [Green Version] - Zhou, F.; Li, X.; Li, W.; Chen, W.; Dong, D.; Wickert, J.; Schuh, H. The impact of estimating high-resolution tropospheric gradients on multi-GNSS precise positioning. Sensors
**2017**, 17, 756. [Google Scholar] [CrossRef] [PubMed] - Han, H.; Xu, T.; Wang, J. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter. Sensors
**2016**, 16, 1057. [Google Scholar] [CrossRef] [Green Version] - Lu, C.; Zus, F.; Ge, M.; Heinkelmann, R.; Dick, G.; Wickert, J.; Schuh, H. Tropospheric delay parameters from numerical weather models for multi-GNSS precise positioning. Atmos. Meas. Tech.
**2016**, 9, 5965–5973. [Google Scholar] [CrossRef] [Green Version] - Lu, C.; Li, X.; Zus, F.; Heinkelmann, R.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H. Improving BeiDou real-time precise point positioning with numerical weather models. J. Geod.
**2017**, 91, 1019–1029. [Google Scholar] [CrossRef] - Zheng, F.; Lou, Y.; Gu, S.; Gong, X.; Shi, C. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. J. Geod.
**2018**, 92, 545–560. [Google Scholar] [CrossRef] - Douša, J.; Eliaš, M.; Václavovic, P.; Eben, K.; Krč, P. A two-stage tropospheric correction model combining data from GNSS and numerical weather model. Gps Solut.
**2018**, 22, 77. [Google Scholar] [CrossRef] - Lu, C.; Chen, X.; Liu, G.; Dick, G.; Wickert, J.; Jiang, X.; Zheng, K.; Schuh, H. Real-time tropospheric delays retrieved from multi-GNSS observations and IGS real-time product streams. Remote Sens.
**2017**, 9, 1317. [Google Scholar] [CrossRef] [Green Version] - Lu, C.; Li, X.; Cheng, J.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H. Real-time tropospheric delay retrieval from multi-GNSS PPP ambiguity resolution: Validation with final troposphere products and a numerical weather model. Remote Sens.
**2018**, 10, 481. [Google Scholar] [CrossRef] [Green Version] - Pan, L.; Guo, F. Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data. Sci. Rep.
**2018**, 8, 17067. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Xu, A.; Xu, Z.; Ge, M.; Xu, X.; Zhu, H.; Sui, X. Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors
**2013**, 13, 4514–4526. [Google Scholar] [CrossRef] [PubMed] - Li, M.; Li, W.; Shi, C.; Zhao, Q.; Su, X.; Qu, L.; Liu, Z. Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach. Adv. Space Res.
**2015**, 55, 150–162. [Google Scholar] [CrossRef] - Hadas, T.; Kazmierski, K.; Sośnica, K. Performance of Galileo-only dual-frequency absolute positioning using the fully serviceable Galileo constellation. GPS Solut.
**2019**, 23, 108. [Google Scholar] [CrossRef] [Green Version] - European GNSS Service Centre. Available online: http://www.gsc-europa (accessed on 23 January 2020).
- Liu, G.; Zhang, X.; Li, P. Improving the Performance of Galileo Uncombined Precise Point Positioning Ambiguity Resolution Using Triple-Frequency Observations. Remote Sens.
**2019**, 11, 341. [Google Scholar] [CrossRef] [Green Version] - Li, X.; Li, X.; Liu, G.; Feng, G.; Yuan, Y.; Zhang, K.; Ren, X. Triple-frequency PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo. J. Geod.
**2019**, 1–18. [Google Scholar] [CrossRef] - Li, X.; Liu, G.; Li, X.; Zhou, F.; Feng, G.; Yuan, Y.; Zhang, K. Galileo PPP rapid ambiguity resolution with five-frequency observations. GPS Solut.
**2020**, 24, 24. [Google Scholar] [CrossRef] - Deo, M.; El-Mowafy, A. Triple-frequency GNSS models for PPP with float ambiguity estimation: Performance comparison using GPS. Surv. Rev.
**2018**, 50, 249–261. [Google Scholar] [CrossRef] [Green Version] - Guo, F.; Zhang, X.; Wang, J.; Ren, X. Modeling and assessment of triple-frequency BDS precise point positioning. J. Geod.
**2016**, 90, 1223–1235. [Google Scholar] [CrossRef] - Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Géod.
**1973**, 107, 13–34. [Google Scholar] [CrossRef] - Vaclavovic, P.; Dousa, J.; Gyori, G. G-Nut software library-state of development and first results. Acta Geodyn. Geomater.
**2013**, 10, 431–436. [Google Scholar] [CrossRef] [Green Version] - Dousa, J.; Vaclavovic, P. Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv. Space Res.
**2014**, 53, 1347–1358. [Google Scholar] [CrossRef] - Douša, J.; Václavovic, P.; Zhao, L.; Kačmařík, M. New adaptable all-in-one strategy for estimating advanced tropospheric parameters and using real-time orbits and clocks. Remote Sens.
**2018**, 10, 232. [Google Scholar] [CrossRef] [Green Version] - Vaclavovic, P.; Dousa, J. Backward smoothing for precise GNSS applications. Adv. Space Res.
**2015**, 56, 1627–1634. [Google Scholar] [CrossRef] - European GNSS (Galileo) Initial Service, Open Service (OS) Service Definition Document (SDD), Issue 1.1, European Union, May 2019. Available online: http://www.gsc-europa.eu (accessed on 23 January 2020).
- Han, S.; Rizos, C. The Impact of Two Additional Civilian GPS Frequencies on Ambiguity Resolution Strategies. In 55th National Meeting US Institute of Navigation, “ Navigational Technology for the 21st Century”; The Institute of Navigation: Manassas, VA, USA, 2000; pp. 28–30. [Google Scholar]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J.-C. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. J. Geod.
**2012**, 86, 991–1003. [Google Scholar] [CrossRef] - Prange, L.; Dach, R.; Lutz, S.; Schaer, S.; Jäggi, A. The CODE MGEX Orbit and Clock Solution; Springer: Cham, Switzerland, 2015; pp. 767–773. [Google Scholar] [CrossRef] [Green Version]
- Kazmierski, K.; Sośnica, K.; Hadas, T. Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning. GPS Solut.
**2018**, 22, 11. [Google Scholar] [CrossRef] [Green Version] - Guo, F.; Li, X.; Zhang, X.; Wang, J. Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut.
**2017**, 21, 279–290. [Google Scholar] [CrossRef] - Ejigu, Y.G.; Hunegnaw, A.; Abraha, K.E.; Teferle, F.N. Impact of GPS antenna phase center models on zenith wet delay and tropospheric gradients. GPS Solut.
**2019**, 23. [Google Scholar] [CrossRef] - Kacmarik, M.; Dousa, J.; Zus, F.; Vaclavovic, P.; Balidakis, K.; Dick, G.; Wickert, J. Sensitivity of GNSS tropospheric gradients to processing options. Ann. Geophys.
**2019**, 37, 429–446. [Google Scholar] [CrossRef] [Green Version] - Pacione, R.; Pace, B.; Vedel, H.; Haan, S.D.; Lanotte, R.; Vespe, F. Combination methods of tropospheric time series. Adv. Space Res.
**2011**, 47, 323–335. [Google Scholar] [CrossRef] - Buist, P.; Mozo, A.; Tork, H. Overview of the Galileo Reference Centre: Mission, Architecture and Operational Concept. In Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 1485–1495. [Google Scholar]
- Buist, P.; Porretta, M.; Mozo, A.; Tork, H. The Galileo Reference Centre and Its Role in the Galileo Service Provision. In Proceedings of the 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018. [Google Scholar]

**Figure 1.**Change of the Galileo constellation: Colors indicates the percentage of navigation records in a day providing a healthy Signal-In-Space status, i.e., all healthy = 100% and all unhealthy = 0%.

**Figure 2.**Availability of the Galileo Position Dilution Of Precision (PDOP)< 6 in January (left) and March (right), 2019.

**Figure 3.**Variations of Galileo troposphere ZTDs for stations ZIM2 (top) and GOP6 (bottom) from October 27, 2018 (Day Of Year (DOY) 300), to May 30, 2019 (DOY 150).

**Figure 4.**Standard deviation of the GPS, GLONASS (GLO) and Galileo (GAL) standalone Zenith Total Delay (ZTD) solutions with respect to the multi-GNSS solution. Dark color box is from data before 2019-02-11 and light color after that day.

**Figure 6.**Time series of the difference between ZTDs, as obtained with ionosphere-free (IF) and raw (RAW) models.

**Figure 9.**ZTD evaluation with respect to the IGS final product-bias (top) and standard deviation (bottom).

**Figure 10.**Time series of ZWD (top), North component (middle), and East component (bottom) of the troposphere horizontal gradient obtained with GPS and Galileo IF solutions at the AREG station.

**Figure 11.**Standard deviation of ZTD estimated with Galileo-only observations and different processing strategies.

**Table 1.**Processing strategies for the multi-GNSS (Global Navigation Satellite System) troposphere estimation.

Item | Strategies |
---|---|

Estimator | Forward Kalman/Backward smoothing |

Satellite orbits | Fixed |

Satellite clock offsets | Fixed |

Observations | Carrier phase and pseudorange observations |

Observation weighting | Elevation-dependent weight |

Elevation mask angle | 5 degree |

Station displacement | Solid Earth tides, ocean tide loading, IERS Convention 2010 |

Earth rotation parameters | Fixed |

Antenna phase centers | Corrected with “igs14_ wwww.atx” file |

Zenith Tropospheric Delay | ZHD: Saastamoinen model ZWD: estimated with random-walk Mapping function: GMF |

Tropospheric gradients | Estimated, epoch-wise random-walk |

Phase-windup effect | Corrected |

Receiver clock offset | Estimated as white noise |

Inter-system Bias(ISB) and Inter-frequency Bias(IFB) | Estimated as constant with GPS as a reference |

Station coordinates | Static: estimated and modeled as constants |

Initial phase ambiguities | Estimated as constants in a float solution |

**Table 2.**List of the stations that the receiver satellite antenna phase center offsets (PCOs) and variations (PCVs) are not calibrated with the strategy “GAL-IF1”.

Station Name | Antenna Type |
---|---|

MADR | AOAD/M_T NONE |

SFER | LEIAR25 NONE |

REUN | TRM55971.00 NONE |

Modes | GPS | GAL |
---|---|---|

IF-dual | L1, L2 | E1, E5a |

RAW-dual | L1, L2 | E1, E5a |

RAW-multi | L1, L2, L5 | E1, E5a, E5b, E5 |

GAL | GPS | ||
---|---|---|---|

Observations | Noise [m] | Observations | Noise [m] |

IF | 0.85 | IF | 1.19 |

E1 | 0.31 | L1, | 0.38 |

E5a | 0.45 | L2 | 0.36 |

E5b | 0.46 | L5 | 0.43 |

E5 | 0.15 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhao, L.; Václavovic, P.; Douša, J.
Performance Evaluation of Troposphere Estimated from Galileo-Only Multi-Frequency Observations. *Remote Sens.* **2020**, *12*, 373.
https://doi.org/10.3390/rs12030373

**AMA Style**

Zhao L, Václavovic P, Douša J.
Performance Evaluation of Troposphere Estimated from Galileo-Only Multi-Frequency Observations. *Remote Sensing*. 2020; 12(3):373.
https://doi.org/10.3390/rs12030373

**Chicago/Turabian Style**

Zhao, Lewen, Pavel Václavovic, and Jan Douša.
2020. "Performance Evaluation of Troposphere Estimated from Galileo-Only Multi-Frequency Observations" *Remote Sensing* 12, no. 3: 373.
https://doi.org/10.3390/rs12030373