Tangle-Free Exploration with a Tethered Mobile Robot
Abstract
:1. Introduction
- The main algorithm has been generalized and made modular, meaning it is no longer limited neither to frontier-based exploration, which we used in the previous paper, nor to any specific path planner.
- A new path planning algorithm is proposed and implemented, resulting in much better performance.
- Our current implementation is fully integrated with SLAM. Differently from [23], which assumed that the position of the robot was known, the system is now completely independent of any external tracking device, allowing autonomous exploration with the on-board sensors only.
- New simulations and real-robot experiments are performed to evaluate and illustrate our approach.
2. Problem Definition
3. Background on Homotopy
4. Exploration Algorithm
Algorithm 1 Tether-aware exploration algorithm, general form. |
4.1. Analysis
4.2. Implementation
Algorithm 2 Implemented tether-aware exploration algorithm. |
Algorithm 3 “GetPath” function. |
4.3. Homotopic Path Optimizer
Algorithm 4 OptimizeShort algorithm. |
Algorithm 5 OptimizeTight algorithm. |
5. Results
5.1. Simulations
5.1.1. Performance Metrics
5.1.2. Gazebo Simulations
5.2. Real World Experiment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barker, L.D.; Jakuba, M.V.; Bowen, A.D.; German, C.R.; Maksym, T.; Mayer, L.; Boetius, A.; Dutrieux, P.; Whitcomb, L.L. Scientific Challenges and Present Capabilities in Underwater Robotic Vehicle Design and Navigation for Oceanographic Exploration Under-Ice. Remote Sens. 2020, 12, 2588. [Google Scholar] [CrossRef]
- Rogers, J.G., III; Sherrill, R.E.; Schang, A.; Meadows, S.L.; Cox, E.P.; Byrne, B.; Baran, D.G.; Curtis, J.W., III; Brink, K.M. Distributed subterranean exploration and mapping with teams of UAVs. In Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VIII; International Society for Optics and Photonics: Anaheim, CA, USA, 2017; Volume 10190, p. 1019017. [Google Scholar]
- Zhao, J.; Gao, J.; Zhao, F.; Liu, Y. A search-and-rescue robot system for remotely sensing the underground coal mine environment. Sensors 2017, 17, 2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamauchi, B.; Schultz, A.; Adams, W. Mobile robot exploration and map-building with continuous localization. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium, 20 May 1998; Volume 4, pp. 3715–3720. [Google Scholar]
- Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97.’Towards New Computational Principles for Robotics and Automation’, Monterey, CA, USA, 10–11 July 1997; pp. 146–151. [Google Scholar]
- Rekleitis, I.M.; Dudek, G.; Milios, E.E. Graph-based exploration using multiple robots. In Distributed Autonomous Robotic Systems 4; Springer: Berlin/Heidelberg, Germany, 2000; pp. 241–250. [Google Scholar]
- Vallvé, J.; Andrade-Cetto, J. Potential information fields for mobile robot exploration. Robot. Auton. Syst. 2015, 69, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.P., Jr.; Engel, P.M.; Trevisan, M.; Idiart, M.A. Exploration method using harmonic functions. Robot. Auton. Syst. 2002, 40, 25–42. [Google Scholar] [CrossRef]
- Bourgault, F.; Makarenko, A.A.; Williams, S.B.; Grocholsky, B.; Durrant-Whyte, H.F. Information based adaptive robotic exploration. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 1, pp. 540–545. [Google Scholar]
- Elfes, A. Occupancy grids: A stochastic spatial representation for active robot perception. In Proceedings of the Sixth Conference on Uncertainty in AI, Cambridge, MA, USA, 27–29 July 1990; Volume 2929, p. 6. [Google Scholar]
- Mei, Y.; Lu, Y.H.; Lee, C.G.; Hu, Y.C. Energy-efficient mobile robot exploration. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 15–19 May 2006; pp. 505–511. [Google Scholar]
- McGarey, P.; Pomerleau, F.; Barfoot, T.D. System design of a tethered robotic explorer (TReX) for 3D mapping of steep terrain and harsh environments. In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 267–281. [Google Scholar]
- Bowen, A.; German, C.; Jakuba, M.; Kinsey, J.C.; Mayer, L.; Yoerger, D.; Whitcomb, L.L. Lightly tethered unmanned underwater vehicle for under-ice exploration. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–12. [Google Scholar]
- Iqbal, J.; Heikkila, S.; Halme, A. Tether tracking and control of ROSA robotic rover. In Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 689–693. [Google Scholar]
- McGarey, P.M. Towards Autonomy and Mobility for a Tethered Robot Exploring Extremely Steep Terrain. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2017. [Google Scholar]
- Igarashi, T.; Stilman, M. Homotopic path planning on manifolds for cabled mobile robots. In Algorithmic Foundations of Robotics IX; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–18. [Google Scholar]
- Kim, S.; Bhattacharya, S.; Kumar, V. Path planning for a tethered mobile robot. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1132–1139. [Google Scholar]
- LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report; Computer Science Dept., Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Hernandez, E.; Carreras, M.; Ridao, P. A comparison of homotopic path planning algorithms for robotic applications. Robot. Auton. Syst. 2015, 64, 44–58. [Google Scholar] [CrossRef]
- Yi, D.; Goodrich, M.A.; Seppi, K.D. Homotopy-aware RRT*: Toward human-robot topological path-planning. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 279–286. [Google Scholar]
- Sakcak, B.; Bascetta, L.; Ferretti, G. Homotopy aware kinodynamic planning using RRT-based planners. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 1568–1573. [Google Scholar]
- Kim, S.; Likhachev, M. Path planning for a tethered robot using Multi-Heuristic A* with topology-based heuristics. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4656–4663. [Google Scholar]
- Shapovalov, D.; Pereira, G.A.S. Exploration of unknown environments with a tethered mobile robot. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 6826–6831. [Google Scholar]
- Shnaps, I.; Rimon, E. Online coverage by a tethered autonomous mobile robot in planar unknown environments. IEEE Trans. Robot. 2014, 30, 966–974. [Google Scholar] [CrossRef]
- Sharma, G.; Poudel, P.; Dutta, A.; Zeinali, V.; Khoei, T.T.; Kim, J.H. A 2-Approximation Algorithm for the Online Tethered Coverage Problem. Proceedings of Robotics: Science and Systems (RSS), Freiburg im Breisgau, Germany, 22–26 June 2019. [Google Scholar]
- Choset, H.M.; Hutchinson, S.; Lynch, K.M.; Kantor, G.; Burgard, W.; Kavraki, L.E.; Thrun, S.; Arkin, R.C. Principles of Robot Motion: Theory, Algorithms, and Implementation; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System. In Proceedings of the IEEE IInternational Conference on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; pp. 2149–2154. [Google Scholar]
- Zhu, Q.; Wang, Z.; Hu, H.; Xie, L.; Ge, X.; Zhang, Y. Leveraging photogrammetric mesh models for aerial-ground feature point matching toward integrated 3D reconstruction. ISPRS J. Photogramm. Remote Sens. 2020, 166, 26–40. [Google Scholar] [CrossRef]
- Cui, H.; Shi, T.; Zhang, J.; Xu, P.; Meng, Y.; Shen, S. View-graph Construction Framework for Robust and Efficient Structure-from-Motion. Pattern Recognit. 2020, 107712. [Google Scholar] [CrossRef]
Tolerance | Tangle (%) | Time per Iteration (s) | Total Time (s) | Total Iterations | Max Tether Length | Total Path Length |
---|---|---|---|---|---|---|
Backtrack | 0 | 0.063 ± 0.005 | 2.611 ± 0.323 | 41.5 ± 2.5 | 24.129 ± 0.912 | 1120.101 ± 78.904 |
0 | 0 | 1.000 ± 0.184 | 37.727 ± 7.629 | 37.0 ± 2.6 | 27.742 ± 5.800 | 187.544 ± 39.293 |
2R | 0 | 0.979 ± 0.123 | 36.335 ± 5.545 | 37.0 ± 2.8 | 29.937 ± 4.696 | 169.000 ± 29.433 |
4R | 0 | 1.051 ± 0.153 | 39.174 ± 6.963 | 37.2 ± 3.0 | 32.431 ± 4.264 | 165.251 ± 19.336 |
8R | 14 | 1.120 ± 0.143 | 42.239 ± 6.951 | 37.6 ± 2.2 | 36.147 ± 3.192 | 170.364 ± 23.007 |
16R | 28 | 1.264 ± 0.220 | 48.757 ± 9.515 | 38.5 ± 2.1 | 39.014 ± 0.940 | 173.233 ± 21.557 |
∞ | 44 | 1.339 ± 0.366 | 53.098 ± 12.331 | 39.2 ± 2.8 | 39.476 ± 0.685 | 171.970 ± 26.533 |
∞ () | 88 | 0.270 ± 0.089 | 10.554 ± 3.745 | 38.8 ± 2.8 | 78.129 ± 18.817 | 126.714 ± 14.293 |
Tolerance | Tangle (%) | Time per Iteration (s) | Total Time (s) | Total Iterations | Max Tether Length | Total Path Length |
---|---|---|---|---|---|---|
Backtrack | 0 | 0.076 ± 0.051 | 3.558 ± 0.383 | 46.5 ± 3.0 | 24.673 ± 0.754 | 1269.056 ± 92.467 |
0 | 0 | 2.256 ± 0.470 | 100.280 ± 24.641 | 44.2 ± 3.2 | 26.479 ± 3.282 | 292.230 ± 42.446 |
2R | 0 | 2.440 ± 0.453 | 107.576 ± 22.351 | 43.9 ± 2.3 | 26.721 ± 1.481 | 236.458 ± 25.719 |
4R | 6 | 2.625 ± 0.733 | 120.867 ± 39.459 | 45.6 ± 3.1 | 30.550 ± 2.292 | 225.613 ± 27.852 |
8R | 12 | 2.974 ± 0.607 | 139.431 ± 31.309 | 46.7 ± 3.1 | 35.543 ± 2.435 | 223.947 ± 21.973 |
16R | 32 | 3.174 ± 0.979 | 154.725 ± 51.098 | 46.9 ± 3.0 | 39.178 ± 0.689 | 225.708 ± 19.908 |
∞ | 54 | 3.241 ± 1.054 | 153.764 ± 53.731 | 47.1 ± 3.0 | 39.200 ± 0.722 | 228.256 ± 23.976 |
∞ () | 98 | 1.484 ± 0.554 | 70.894 ± 29.271 | 47.2 ± 3.3 | 102.364 ± 13.341 | 145.629 ± 13.175 |
Tolerance | Tangle (%) | Time per Iteration (s) | Total Time (s) | Total Iterations | Max Tether Length | Total Path Length |
---|---|---|---|---|---|---|
Backtrack | 0 | 0.526 ± 0.031 | 34.285 ± 4.214 | 65.0 ± 5.1 | 26.661 ± 0.980 | 2032.611 ± 173.774 |
0 | 0 | 5.564 ± 0.912 | 357.424 ± 74.419 | 63.9 ± 5.1 | 27.401 ± 1.335 | 667.252 ± 71.126 |
2R | 0 | 5.573 ± 0.697 | 360.587 ± 59.524 | 64.5 ± 4.3 | 28.351 ± 1.771 | 533.391 ± 53.077 |
4R | 2 | 5.942 ± 1.056 | 393.569 ± 86.561 | 65.9 ± 4.9 | 30.658 ± 1.449 | 516.228 ± 71.644 |
8R | 20 | 6.177 ± 0.924 | 417.102 ± 75.505 | 67.3 ± 4.0 | 35.225 ± 1.967 | 481.901 ± 42.814 |
16R | 32 | 6.466 ± 0.862 | 441.738 ± 64.365 | 68.3 ± 4.4 | 39.385 ± 0.522 | 489.221 ± 38.029 |
∞ | 48 | 6.618 ± 0.869 | 454.108 ± 68.735 | 68.5 ± 3.4 | 39.534 ± 0.384 | 498.749 ± 43.545 |
∞ () | 96 | 5.091 ± 1.404 | 375.764 ± 108.251 | 73.6 ± 3.9 | 218.189 ± 23.007 | 285.281 ± 19.157 |
Environment Type | Tangle (%) | Time per Iteration (s) | Total Time (s) | Total Iterations | Max Tether Length | Total Path Length |
---|---|---|---|---|---|---|
Low density | 0 | 4.095 ± 0.751 | 157.243 ± 33.027 | 38.3 ± 2.8 | 30.322 ± 4.843 | 171.551 ± 20.323 |
High density | 0 | 6.937 ± 1.279 | 315.000 ± 67.851 | 45.2 ± 2.9 | 27.432 ± 2.320 | 239.675 ± 26.978 |
Cells Sampled | Time per Iteration (s) | Total Time (s) | Total Iterations | Max Tether Length | Total Path Length |
---|---|---|---|---|---|
0 | 0.515 ± 0.128 | 24.174 ± 7.017 | 46.6 ± 2.9 | 27.295 ± 2.540 | 284.044 ± 32.336 |
4 | 1.562 ± 0.534 | 71.740 ± 25.452 | 45.7 ± 2.8 | 27.067 ± 1.797 | 249.882 ± 30.136 |
8 | 2.440 ± 0.453 | 107.576 ± 22.351 | 43.9 ± 2.3 | 26.721 ± 1.481 | 236.458 ± 25.719 |
16 | 4.099 ± 0.841 | 186.638 ± 43.164 | 45.4 ± 2.5 | 28.081 ± 2.797 | 228.557 ± 26.656 |
32 | 7.206 ± 1.592 | 331.824 ± 84.986 | 45.8 ± 2.9 | 27.682 ± 2.088 | 227.961 ± 24.718 |
64 | 11.576 ± 2.896 | 535.286 ± 147.438 | 46.0 ± 2.7 | 28.042 ± 2.215 | 227.405 ± 28.321 |
128 | 11.937 ± 3.171 | 546.617 ± 159.215 | 45.5 ± 3.1 | 27.969 ± 2.637 | 226.805 ± 27.268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapovalov, D.; Pereira, G.A.S. Tangle-Free Exploration with a Tethered Mobile Robot. Remote Sens. 2020, 12, 3858. https://doi.org/10.3390/rs12233858
Shapovalov D, Pereira GAS. Tangle-Free Exploration with a Tethered Mobile Robot. Remote Sensing. 2020; 12(23):3858. https://doi.org/10.3390/rs12233858
Chicago/Turabian StyleShapovalov, Danylo, and Guilherme A. S. Pereira. 2020. "Tangle-Free Exploration with a Tethered Mobile Robot" Remote Sensing 12, no. 23: 3858. https://doi.org/10.3390/rs12233858
APA StyleShapovalov, D., & Pereira, G. A. S. (2020). Tangle-Free Exploration with a Tethered Mobile Robot. Remote Sensing, 12(23), 3858. https://doi.org/10.3390/rs12233858