Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Datasets
2.2.1. PROBA-V
2.2.2. Suomi NPP-VIIRS
2.2.3. Landsat-8 OLI
2.2.4. Sentinel-2 MSI
2.3. Global Burned Area Products
2.4. Fire Hotspots Products
2.5. Land Cover Maps
2.5.1. Forest and Non-Forest Map
2.5.2. Mato Grosso Cropland Map
2.6. Methodological Overview
2.7. Evaluation and Agreement Analysis
3. Results
3.1. Burned Area Spatial Distribution and Estimates by Land Cover
3.2. Evaluation and Agreement Analysis
4. Discussion
4.1. Burned Area by Land Cover
4.2. Overall Accuracy and Agreement Analysis
4.3. Specific Product of Burned Area by Each Dataset
4.4. Comparison with Active Fires
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Path/Row | Date | Path/Row | Date |
---|---|---|---|
223/067 | 21/Oct/2015 | 227/067 | 17/Oct/2015 |
223/068 | 21/Oct/2015 | 227/068 | 17/Oct/2015 |
223/069 | 21/Oct/2015 | 227/069 | 17/Oct/2015 |
223/070 | 21/Oct/2015 | 227/070 | 17/Oct/2015 |
223/071 | 21/Oct/2015 | 227/071 | 17/Oct/2015 |
224/067 | 12/Oct/2015 | 227/072 | 17/Oct/2015 |
224/068 | 12/Oct/2015 | 228/066 | 08/Oct/2015 |
224/069 | 12/Oct/2015 | 228/067 | 08/Oct/2015 |
224/070 | 12/Oct/2015 | 228/068 | 08/Oct/2015 |
224/071 | 12/Oct/2015 | 228/069 | 08/Oct/2015 |
224/072 | 29/Nov/2015 | 228/070 | 08/Oct/2015 |
225/067 | 19/Oct/2015 | 228/071 | 08/Oct/2015 |
225/068 | 19/Oct/2015 | 229/065 | 15/Oct/2015 |
225/069 | 19/Oct/2015 | 229/066 | 15/Oct/2015 |
225/070 | 19/Oct/2015 | 229/067 | 15/Oct/2015 |
225/071 | 19/Oct/2015 | 229/068 | 15/Oct/2015 |
225/072 | 19/Oct/2015 | 229/069 | 15/Oct/2015 |
226/067 | 08/Sep/2015 10/Oct/2015 | 229/070 | 15/Oct/2015 |
226/068 | 08/Sep/2015 10/Oct/2015 | 229/071 | 15/Oct/2015 |
226/069 | 08/Sep/2015 | 230/066 | 06/Oct/2015 |
226/070 | 08/Sep/2015 | 230/067 | 06/Oct/2015 |
226/071 | 08/Sep/2015 | 230/068 | 06/Oct/2015 |
226/072 | 23/Aug/2015 | 231/066 | 11/Sep/2015 |
231/067 | 11/Sep/2015 13/Oct/2015 |
References
- Belcher, C.M. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; College of Life and Environmental Sciences, University of Exeter: Exeter, UK, 2013. [Google Scholar]
- Coutinho, L.M. Fire in the ecology of the Brazilian cerrado. In Fire in the Tropical Biota; Goldammer, J.G., Ed.; Springer-Velarg: New York, NY, USA, 1990; pp. 82–105. [Google Scholar]
- Alencar, A.; Nepstad, D.; Silva, E.; Brown, F.; Lefebvre, P.; Mendosa, E.; Almeida, D.; Carvalho, O., Jr. Uso do Fogo na Amazônia: Estudos de Caso ao Longo do Arco de Desmatamento; World Bank Report; World Bank: Brasilia, Brazil, 1997. [Google Scholar]
- Sampaio, G.; Nobre, C.; Costa, M.H.; Satyamurty, P.; Soares Filho, B.S.; Cardoso, M.F. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 2007, 34, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Nobre, C.; Salazar, L.F. Regional climate change cenarios in South America in the Late XXI Century: Projections and expected impacts. Nova Acta Leopoldina 2010, 112, 251–265. [Google Scholar]
- Bustamante, M.M.C.; Roitman, I.; Aide, T.M.; Alencar, A.; Anderson, L.; Aragão, L.; Asner, G.P.; Barlow, J.; Berenguer, E.; Chambers, J.; et al. Towards an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology 2016, 1, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, M.A.; Ryan, K.C. Fire and fire ecology: Concepts and principles. In Tropical Fire Ecology, Climate Change, Land Use and Ecosystem Dynamics; Cochrane, M.A., Ed.; Springer: Chichester, UK, 2009; pp. 60–97. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Dias, M.A.F.S.; Dias, P.L.S.; Chatfield, R.; Prins, E.; Artaxo, P.; Grell, G.A.; Recuero, F.S. Monitoring the transport of biomass burning emissions in South America. Environ. Fluid Mechanics 2005, 5, 135–167. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Righi, C.A.; Graça, P.M.L.A.; Keizer, E.W.H.; Cerri, C.C.; Nogueira, E.M.; Barbosa, R.I. Biomass and greenhouse gas emissions from land-use change in Brazil’s Amazonian ‘‘arc of deforestation’’: The states of Mato Grosso and Rondônia. Forest Ecology Manag. 2009, 258, 1968–1978. [Google Scholar] [CrossRef]
- Leblon, B.; Bourgeau-Chavez, L.; San-Miguel-Ayanz, J. Use of Remote Sensing in wildfire management. In Sustainable Development–Authoritative and Leading Edge Content for Environmental Management; Curkovic, S., Ed.; InTech Press: Rijeka, Croatia, 2012; pp. 55–82. [Google Scholar]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Science Advances 2017, 3, e1601047. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; De Araüjo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Mercedes, M.M.; Coe, M.T.; Defries, R.S.; Keller, M.; Longo, M.; et al. The amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Cardozo, F.S.; Pereira, G.; Shimabukuro, Y.E.; Moraes, E.C. Analysis and Assessment of the Spatial and Temporal Distribution of Burned Areas in the Amazon Forest. Remote Sensing 2014, 6, 8002–8025. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, C.; Handmer, J.; Betts, R. Estimating the economic, social and environmental impacts of wildfires in Australia. Environ. Hazards 2013, 12, 93–111. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F., Jr. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O. Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; Levine, J.S., Ed.; The MIT Press: Cambridge, MA, USA, 1991; pp. 2–21. [Google Scholar]
- Durigan, G.; Ratter, J.A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 2016, 53, 11–15. [Google Scholar] [CrossRef]
- Mataveli, G.A.V.; Silva, M.E.S.; Pereira, G.; Cardozo, F.S.; Kawakubo, F.S.; Bertani, G.; Costa, J.C.; Ramos, R.C.; Silva, V.V. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Nat. Hazards Earth Syst. Sci. 2018, 18, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Ichoku, C.; Kahn, R.; Chin, M. Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmos. Res. 2012, 111, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire product. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Pereira, G.; Siqueira, R.; Rosário, N.E.; Longo, K.L.; Freitas, S.R.; Cardozo, F.S.; Kaiser, J.W.; Martin, J.; Wooster, M.J. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment. Atmos. Chem. Phys. 2016, 16, 6961–6975. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Lewis, P.E.; Justice, C.O. Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based expectation approach. Remote Sens. Environ. 2002, 83, 263–286. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; Miguel, J.S.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Coppoletta, M.; Merriam, K.E.; Collins, B.M. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 2016, 26, 686–699. [Google Scholar] [CrossRef]
- Andrés, R.G.; Davies, G.M.; Waldron, S.; Scott, E.M.; Gray, A. Increased fire severity alters initial vegetation regeneration across Calluna-dominated ecosystems. J. Environ. Manag. 2019, 231, 1004–1011. [Google Scholar] [CrossRef] [Green Version]
- Casady, G.M.; Marsh, S.E. Broad-scale environmental conditions responsible for post-fire vegetation dynamics. Remote Sens. 2010, 2, 2643–2664. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z. A literature Survey: The Effects of Forest Fire on Ecology and Regeneration. Ph.D. Thesis, Faculty of Forestry and the Forest Environment, Lakehead University, Thunder Bay, ON, USA, 2019; 43p. [Google Scholar]
- Hantson, S.; Padilla, M.; Corti, D.; Chuvieco, E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens. Environ. 2013, 131, 152–159. [Google Scholar] [CrossRef]
- Andela, N.; van der Werf, G.R.; Kaiser, J.W.; van Leeuwen, T.T.; Wooster, M.J.; Lehmann, C.E.R. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences 2016, 13, 3717–3734. [Google Scholar] [CrossRef] [Green Version]
- Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Schroeder, W.; Morisette, J.T.; Csiszar, I.; Giglio, L.; Morton, D.; Justice, C.O. Characterizing vegetation fire dynamics in Brazil through multisatellite Data: Common trends and practical issues. Earth Interact. 2005, 9, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Giglio, G.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Humber, M.L.; Boschetti, L.; Giglio, L.; Justice, C.O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digital Earth 2019, 12, 460–484. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Cabral, A.I.R.; Silva, S.; Silva, P.C.; Vanneschi, L.; Vasconcelos, M.J. Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees. ISPRS J. Photogramm. Remote Sens. 2018, 142, 94–105. [Google Scholar] [CrossRef]
- Chen, D.; Pereira, J.M.C.; Masiero, A.; Pirotti, F. Mapping fire regimes in China using MODIS active fire and burned area data. Appl. Geogr. 2017, 85, 14–26. [Google Scholar] [CrossRef]
- Melchiorre, A.; Boschetti, L. Global Analysis of Burned Area Persistence Time with MODIS Data. Remote Sens. 2018, 10, 750. [Google Scholar] [CrossRef] [Green Version]
- Urbanski, S.; Nordgren, B.; Albury, C.; Schwert, B.; Peterson, D.; Quayle, B.; Hao, W.M. A VIIRS direct broadcast algorithm for rapid response mapping of wildfire burned area in the western United States. Remote Sens. Environ. 2018, 219, 271–283. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C. A Synergetic Approach to Burned Area Mapping Using Maximum Entropy Modeling Trained with Hyperspectral Data and VIIRS Hotspots. Remote Sens. 2020, 12, 858. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Dutra, A.C. Assessment of Land Use Land Cover in Brazil, South America, Using Fraction Images Derived from Proba-V Datasets. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6401–6404. [Google Scholar]
- Aguiar, A.P.D.; Shimabukuro, Y.E.; Mascarenhas, N.D.A. Use of synthetic bands derived from mixing models in the multispectral classification of remote sensing images. Int. J. Remote Sens. 1999, 20, 647–657. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Ponzoni, F.J. Spectral Mixture for Remote Sensing. Linear Model and Applications; Springer Nature: Basel, Switzerland, 2017; p. 77. [Google Scholar] [CrossRef]
- Anderson, L.O.; Aragão, L.E.O.C.; Lima, A.; Shimabukuro, Y.E. Detecção de Cicatrizes de Áreas Queimadas Baseada No Modelo Linear de Mistura Espectral e Imagens Índice de Vegetação Utilizando Dados Multitemporais Do Sensor MODIS/TERRA No Estado Do Mato Grosso, Amazônia Brasileira. Acta Amaz. 2005, 35, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O.; Shimabukuro, Y.E. Mapping Burned Areas in Mediterranean Countries Using Spectral Mixture Analysis from a Uni-Temporal Perspective. Int. J. Remote Sens. 2006, 27, 645–662. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Jorge, A.; Santos, E.G.D.; Gasparini, K.A.C.; Dutra, A.C. Monitoring deforestation and forest degradation using multi-temporal fraction images derived from Landsat sensor data in the Brazilian Amazon. Int. J. Remote Sens. 2019, 40, 5475–5496. [Google Scholar] [CrossRef]
- IBGE, Estados. 2016. Available online: Ftp://geoftp.ibge.gov.br/cartas_e_mapas/mapas_estaduais_e_distrito_federal/informacoes_ambientais/ (accessed on 7 April 2020).
- Rossi, F.S.; Santos, G.A.A. Fire dynamics in Mato Grosso State, Brazil: The relative roles of gross primary productivity. Big Earth Data 2020, 1–22. [Google Scholar] [CrossRef]
- Assis, L.F.F.G.; Ferreira, K.R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.; Rodrigues, J.; Maciel, A.; Camargo, C. TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 513. [Google Scholar] [CrossRef] [Green Version]
- INPE—Instituto Nacional de Pesquisas Espaciais. Coordenação Geral de Observação da Terra. Programa de Monitoramento da Amazônia e Demais Biomas. Desmatamento—Amazônia Legal. 2020. Available online: http://terrabrasilis.dpi.inpe.br/downloads/ (accessed on 15 April 2020).
- Cochrane, M.A.; Laurance, W.F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol. 2002, 18, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Silva Junior, C.H.L.; Aragão, L.E.O.C.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O. Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- INPE—Instituto Nacional de Pesquisas Espaciais. Portal do Monitoramento de Queimadas e Incêndios. 2020. Available online: http://www.inpe.br/queimadas (accessed on 15 April 2020).
- Pettinari, M.L.; Lizundia-Loiola, J.; Chuvieco, E. ESA CCI ECV Fire Disturbance: D4.2 Product User Guide—MODIS, Version 1.0. 2020. Available online: https://www.esa-fire-cci.org/documents (accessed on 1 May 2020).
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006. 2015. Available online: https://doi.org/10.5067/MODIS/MCD64A1.006 (accessed on 10 March 2020).
- Boschetti, L.; Eva, H.D.; Brivio, P.A.; Grégoire, J.M. Lessons to be learned from the comparison of three satellite-derived biomass burning products. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Arai, E.; Eyji Sano, E.; Dutra, A.C.; Cassol, H.L.G.; Hoffmann, T.B.; Shimabukuro, Y.E. Vegetation Fraction Images Derived from PROBA-V Data for Rapid Assessment of Annual Croplands in Brazil. Remote Sens. 2020, 12, 1152. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, Y.E.; Smith, J.A. The least squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Trans. Geosci. Remote Sens. 1991, 29, 16–20. [Google Scholar] [CrossRef]
- Camara, G.; Souza, R.C.M.; Freitas, U.; Garrido, J. SPRING: Integrating remote sensing and GIS by object-oriented data model. Comput. Graph. 1996, 20, 395–403. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Batista, G.T.; Mello, E.M.K.; Moreira, J.C.; Duarte, V. Using shade fraction image segmentation to evaluate deforestation in Landsat Thematic Mapper images of the Amazon region. Int. J. Remote Sens. 1998, 19, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Bins, L.S.; Fonseca, L.M.G.; Earthal, G.J. Satellite imagery segmentation: A region growing approach. In Proceedings of the VIII Simpósio Brasileiro de Sensoriamento Remoto, Salvador, BA, Brazil, 14–19 April 1996; pp. 677–680. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Oxford, UK; Waltham, MA, USA, 2011. [Google Scholar]
- Roy, D.P.; Boschetti, L. Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Morello, T.F.; Parry, L.; Markusson, N.; Barlow, J. Policy instruments to control Amazon fires: A simulation approach. Ecol. Econ. 2017, 138, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, T.A.; Schleeweis, K.G.; Moisen, G.G.; Toney, C.; Cohen, W.B.; Freeman, E.A.; Yang, Z.; Huang, C. Testing a Landsat-based approach for mapping disturbance causality in U.S. forests. Remote Sens. Environ. 2017, 195, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I. Detection rates of the MODIS active fire product in the United States. Remote Sens. Environ. 2008, 112, 2656–2664. [Google Scholar] [CrossRef]
- Schroeder, W.; Prins, E.; Giglio, L.; Csiszar, I.; Schmidt, C.; Morisette, J.; Morton, D. Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 2008, 112, 2711–2726. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Brennan, J.; Gómez-Dans, J.L.; Disney, M.; Lewis, P. Theoretical uncertainties for global satellite-derived burned area estimates. Biogeosciences 2019, 16, 3147–3164. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.A.; Libonati, R.; Pereira, A.A.; Nogueira, J.M.; Santos, F.L.; Peres, L.F.; Santa Rosa, A.; Schroeder, W.; Pereira, J.M.; Giglio, L.; et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 318–331. [Google Scholar] [CrossRef]
Producer | Product | Collection | Sensor | Spatial Resolution | Period |
---|---|---|---|---|---|
European Space Agency | Fire CCI | 5.1 | MODIS | 250 m | Monthly |
NASA MODIS Land Science Team | MCD45A1 | 5.1 | MODIS | 500 m | Monthly |
NASA MODIS Land Science Team | MCD64A1 | 6.0 | MODIS | 500 m | Monthly |
Classes of Land Cover | Burned Area (km2) | Total Burned Area (%) |
---|---|---|
2015 Deforestation | 786.15 | 0.86% |
Old Deforestation | 19,745.43 | 21.54% |
Non-Forest | 61,009.31 | 66.57% |
Forest | 10,111.04 | 11.03% |
Cropland | 4873.32 | 5.32% |
Product | Active Fire and Mapped (%) | Non-Active Fire and Mapped (%) | Non-Active Fire and Non-Mapped (%) | Active Fire and Non-Mapped (%) |
---|---|---|---|---|
OLI+PROBA-V+VIIRS | 92.08 | 72.73 | 27.27 | 7.92 |
OLI | 71.97 | 44.44 | 55.56 | 28.03 |
PROBA-V | 68.08 | 51.27 | 48.73 | 31.92 |
NPP-VIIRS | 34.17 | 24.89 | 75.11 | 65.83 |
MCD64A1 | 64.57 | 16.43 | 83.57 | 35.43 |
MCD45A1 | 41.47 | 14.92 | 85.08 | 58.53 |
Fire CCI | 51.89 | 8.79 | 91.21 | 48.11 |
Product | Area (km2) |
---|---|
OLI+PROBA-V+VIIRS | 96,461.24 |
OLI | 55,694.32 |
PROBA-V | 28,443.52 |
NPP-VIIRS | 29,768.72 |
MODIS MCD64A1 | 40,364.75 |
MODIS MCD45A1 | 31,555.25 |
Fire CCI | 34,991.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimabukuro, Y.E.; Dutra, A.C.; Arai, E.; Duarte, V.; Cassol, H.L.G.; Pereira, G.; Cardozo, F.d.S. Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets. Remote Sens. 2020, 12, 3827. https://doi.org/10.3390/rs12223827
Shimabukuro YE, Dutra AC, Arai E, Duarte V, Cassol HLG, Pereira G, Cardozo FdS. Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets. Remote Sensing. 2020; 12(22):3827. https://doi.org/10.3390/rs12223827
Chicago/Turabian StyleShimabukuro, Yosio Edemir, Andeise Cerqueira Dutra, Egidio Arai, Valdete Duarte, Henrique Luís Godinho Cassol, Gabriel Pereira, and Francielle da Silva Cardozo. 2020. "Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets" Remote Sensing 12, no. 22: 3827. https://doi.org/10.3390/rs12223827
APA StyleShimabukuro, Y. E., Dutra, A. C., Arai, E., Duarte, V., Cassol, H. L. G., Pereira, G., & Cardozo, F. d. S. (2020). Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets. Remote Sensing, 12(22), 3827. https://doi.org/10.3390/rs12223827