Quantifying the Influences of Natural Factors and Human Activities on NDVI Changes in the Hanjiang River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. NDVI Grades
2.3.2. Linear Regression and Mann-Kendall Test
2.3.3. Partial Correlation Analysis
2.3.4. Geographical Detector
- 1.
- Detection of the explanatory power of factors
- 2.
- Detection of factor interactions
- 3.
- Detection of the optimal range/type of factors
- 4.
- Detection of differences between factors
2.3.5. Index Selection and Classification
3. Results
3.1. Spatiotemporal Variations in NDVI in the HJRB
3.1.1. Variations in the Average NDVI in the HJRB
3.1.2. Spatial Patterns of NDVI in the HJRB
3.2. Influences of Different Factors on NDVI
3.2.1. Impacts of Single Factors
3.2.2. Analysis of the Factor Ranges/Types Suitable for Vegetation Growth
3.2.3. Analysis of the Interactions among Factors
3.2.4. Analysis of Different Effects among Factors on NDVI
3.3. Factors Leading to NDVI Changes
3.3.1. Effects of Climate Change on NDVI
3.3.2. Effects of Human Activities on NDVI
4. Discussion
4.1. The Impact of Topography on NDVI
4.2. Suggestions for Vegetation Restoration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gong, Z.; Zhao, S.; Gu, J. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001–2013. J. Geogr. Sci. 2017, 27, 143–160. [Google Scholar] [CrossRef]
- Zhao, J.; Du, Z.; Wu, Z.; Zhang, H.; Guo, N.; Ma, Z.; Liu, X. Seasonal variations of day- and nighttime warming and their effects on vegetation dynamics in China’s temperate zone. Acta Geogr. Sin. 2018, 73, 395–404. [Google Scholar]
- Godinez-Alvarez, H.; Herrick, J.E.; Mattocks, M.; Toledo, D.; Van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 2009, 9, 1001–1008. [Google Scholar] [CrossRef]
- Hu, Y.; Dao, R.; Hu, Y. Vegetation Change and Driving Factors: Contribution Analysis in the Loess Plateau of China during 2000–2015. Sustainability 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Lhermitte, S.; Hill, M.J.; Tits, L.; Coppin, P.; Somers, B. Assessment of Regional Vegetation Response to Climate Anomalies: A Case Study for Australia Using GIMMS NDVI Time Series between 1982 and 2006. Remote Sens. 2017, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jing, X.; Wang, J.; Zhao, C. Analysis of the changes of vegetation coverage of western Beijing mountainous areas using remote sensing and GIS. Environ. Monit. Assess. 2009, 153, 339–349. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Shen, H.; Han, Y.; Pan, Y. Vegetation coverage change and associated driving forces in mountain areas of Northwestern Yunnan, China using RS and GIS. Environ. Monit. Assess. 2012, 184, 4787–4798. [Google Scholar] [CrossRef]
- Adepoju, K.; Adelabu, S.; Fashae, O. Vegetation Response to Recent Trends in Climate and Landuse Dynamics in a Typical Humid and Dry Tropical Region under Global Change. Adv. Meteorol. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlstrom, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Chen, A.; Jiang, W.; Chen, Z. The response of vegetation growth to shifts in trend of temperature in China. J. Geogr. Sci. 2017, 27, 801–816. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wan, H.; Yao, S. Spatial and temporal response of vegetation cover to climate change in different zones of Sichuan-Shannxi area during growing seaon. Acta Ecol. Sin. 2019, 39, 5218–5231. [Google Scholar]
- Begue, A.; Vintrou, E.; Ruelland, D.; Claden, M.; Dessay, N. Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach. Glob. Environ. Chang. Human Policy 2011, 21, 413–420. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Sanjjava, A.; Qin, Z.; Zhou, Y.; Xu, G. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale. Int. J. Climatol. 2015, 35, 4293–4306. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, S.; Chen, J.; Lu, M. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef]
- Wan, H.; Wang, J. Study of dynamic pattern evolution of drought and its correlation with vegetation cover in Baoji area on multi-scale. Acta Ecol. Sin. 2018, 38, 6941–6952. [Google Scholar]
- Peng, W.; Kuang, T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean. Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Xia, H.; Meng, Q. Spatiotemporal Variability of Asymmetric Daytime and Night-Time Warming and Its Effects on Vegetation in the Yellow River Basin from 1982 to 2015. Sensors 2019, 19, 1832. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Huang, S.; Xie, Y.; Wang, H.; Huang, Q.; Leng, G.; Li, P.; Wang, L. Spatial-temporal changes in vegetation cover in a typical semi-humid and semi-arid region in China: Changing patterns, causes and implications. Ecol. Indic. 2019, 98, 462–475. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; Yang, W.; Yi, Y.; Yang, Z.; Fu, Q. Multiple spatio-temporal patterns of vegetation coverage and its relationship with climatic factors in a large dam-reservoir-river system. Ecol. Eng. 2019, 138, 188–199. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Wang, L.; Guo, Y. Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China. Remote Sens. Environ. 2019, 232. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; Xia, J.; Shi, Z.; Jiang, L.; Niu, S.; Zhou, X.; Cao, J. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 2016, 220, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Brivio, P.A.; Bartholome, E.; Stroppiana, D.; Hoscilo, A. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS J. Photogramm. Remote Sens. 2013, 78, 26–40. [Google Scholar] [CrossRef]
- Liu, L.; Zhan, C.; Hu, S.; Dong, Y. Vegetation change and its topographic effects in the karst mountainous areas of Guizhou and Guangxi. Geogr. Res. 2018, 37, 2433–2446. [Google Scholar] [CrossRef]
- Rojo, V.; Arzamendia, Y.; Perez, C.; Baldo, J.; Vila, B.L. Spatial and temporal variation of the vegetation of the semiarid Puna in a pastoral system in the Pozuelos Biosphere Reserve. Environ. Monit. Assess. 2019, 191, 635. [Google Scholar] [CrossRef]
- Leroux, L.; Bégué, A.; Lo Seen, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Tai, X.; Epstein, H.E.; Li, B. Elevation and Climate Effects on Vegetation Greenness in an Arid Mountain-Basin System of Central Asia. Remote Sens. 2020, 12, 1665. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, L.; Yin, S. Multi-perspective analysis of vegetation cover changes and driving factors of long time series based on climate and terrain data in Hanjiang River Basin, China. Arab. J. Geosci. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ren, Z.; Zhang, C. The correlation analysis and space-time changes of NDVI and hydro-thermal index in Hanjiang basin. Geogr. Res. 2013, 32, 1623–1633. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Zoungrana, B.J.B.; Conrad, C.; Thiel, M.; Amekudzi, L.K.; Da, E.D. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. J. Arid Environ. 2018, 153, 66–75. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, L.; Li, Y.; Jiao, L.; Wang, H.; Yan, J.; Lu, Y.; Fu, B. Spatio-temporal characteristics of the trade-off and synergy relationships among multiple ecosystem services in the Upper Reaches of Hanjiang River Basin. Acta Geogr. Sin. 2017, 72, 2064–2078. [Google Scholar]
- Yu, Q.; Tu, Z.; Yu, G.; Xu, L.; Yang, D.; Yang, Y. Modelling the crop water-satisfied degree on the grid scale: A CropWRA model and the case study of Hanjiang River Basin, China. Agric. For. Meteorol. 2018, 262, 215–226. [Google Scholar] [CrossRef]
- Resources and Environment Data Cloud Platform of the Chinese Academy of Sciences. Available online: http://www.resdc.cn/ (accessed on 1 September 2020).
- Xu, X. Spatial Distribution Data Set of China Monthly Vegetation Index (NDVI). Data Registration and Publication System of Chinese Academy of Sciences. 2018. Available online: http://www.resdc.cn/ (accessed on 15 November 2020).
- Li, X. Time-dalayed correlation analysis between vegetation cover changes and climatic factors in Hanjiang River Basin. Bull. Soil Water Conserv. 2013, 33, 268–270. [Google Scholar] [CrossRef]
- Shuttle Radar Topography Mission (SRTM) Digital Elevation Database of the USGS/NASA. Available online: http://srtm.csi.cgiar.org/ (accessed on 1 April 2020).
- National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA). Available online: http://cdc.cma.gov.cn/ (accessed on 1 April 2020).
- China Meteorological Administration. Assessment Method for Solar Energy; China Meteorological Administration: Beijing, China, 2019; Volume QX/T 89-2019.
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. Remote Sensing Monitoring Data Set of Land Use and Land Cover in China in Multiple Periods (CNLUCC). Data Registration and Publication System of CHINESE Academy of Sciences. 2018. Available online: http://www.resdc.cn/DOI/ (accessed on 15 November 2020).
- Peng, W.; Wang, G.; Zhou, J.; Xu, X.; Luo, H.; Zhao, J.; Yang, C. Dynamic monitoring of fractional vegetation cover along Minjiang River from Wenchuan County to Dujiangyan City using multi-temporal landsat 5 and 8 images. Acta Ecol. Sin. 2016, 36, 1975–1988. [Google Scholar]
- Chen, T.; Xia, J.; Zou, L. The response of the upstream hydrological cycle process to climate change in the upper Hanjiang River Basin. China Rural Water Hydropower 2019, 9, 1–7. [Google Scholar]
- Wang, Q.; Zhang, T.; Yi, G.; Chen, T.; Bie, X.; He, Y. Tempo-spatial variations and driving factors analysis of net primary productivity in the Hengduan mountain area from 2004 to 2014. Acta Ecol. Sin. 2017, 37, 3084–3095. [Google Scholar]
- Kamali, A.; Khosravi, M.; Hamidianpour, M. Spatial-temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran. Environ. Monit. Assess. 2020, 192, 718. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydrol. 2020, 584. [Google Scholar] [CrossRef]
- Hamed, K.H. Exact distribution of the Mann-Kendall trend test statistic for persistent data. J. Hydrol. 2009, 365, 86–94. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, T.; Yi, G.; Li, J.; Bie, X.; Liu, D.; Luo, L. Spatio-temporal characteristics of evapotranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014. Acta Geogr. Sin. 2018, 73, 2117–2134. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, N.; Shen, M.; Guo, L. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecol. Indic. 2020, 112. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z. Spatiotemporal pattern of net primary productivity in the Hanjiang River Basin. Acta Ecol. Sin. 2016, 36, 7667–7677. [Google Scholar]
- Liu, H.; Zheng, L.; Liao, M. Dynamics of Vegetation Change and Its Relationship with Nature and Human Activities—A Case Study of Poyang Lake Basin, China. J. Sustain. For. 2020, 1–21. [Google Scholar] [CrossRef]
- Fu, J.; Cao, G.; Guo, W. Changes of growing season NDVI at different elevations, slope, slope aspect and its relationship with meteorological factors in the southern slope of Qilian Mountains, China from 1998–2017. Chin. J. Appl. Ecol. 2020, 31, 1203–1212. [Google Scholar]
- Wang, X.; Du, P.; Chen, D.; Lin, C.; Zheng, H.; Guo, S. Characterizing urbanization-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001–2018). J. Clean. Prod. 2020, 274. [Google Scholar] [CrossRef]
- Feng, D.; Yang, C.; Fu, M.; Wang, J.; Zhang, M.; Sun, Y.; Bao, W. Do anthropogenic factors affect the improvement of vegetation cover in resource-based region? J. Clean. Prod. 2020, 271. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Yue, Y.; Tong, X.; Liao, C.; Zhang, M.; Jiang, Y. Factors impacting on vegetation dynamics and spatial non-stationary relationships in karst regions of southwest China. Acta Ecol. Sin. 2017, 37, 4008–4018. [Google Scholar]
- Song, Y.; Aryal, J.; Tan, L.; Jin, L.; Gao, Z.; Wang, Y. Comparison of changes in vegetation and land cover types between Shenzhen and Bangkok. Land Degrad. Dev. 2020. [Google Scholar] [CrossRef]
- Ning, T.; Liu, W.; Li, Z.; Feng, Q. Modelling and attributing evapotranspiration changes on China’s Loess Plateau with Budyko framework considering vegetation dynamics and climate seasonality. Stoch. Environ. Res. Risk Assess. 2020, 34, 1217–1230. [Google Scholar] [CrossRef]
- Zeng, Z.; Peng, L.; Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 2018, 33, 9–25. [Google Scholar] [CrossRef]
- Liu, Q.; McVicar, T.R.; Yang, Z.; Donohue, R.J.; Liang, L.; Yang, Y. The hydrological effects of varying vegetation characteristics in a temperate water-limited basin: Development of the dynamic Budyko-Choudhury-Porporato (dBCP) model. J. Hydrol. 2016, 543, 595–611. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Shen, Y.; Yu, Q. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Sci. Bull. 2020, 65, 1859–1861. [Google Scholar] [CrossRef]
Category | Code | Index | Unit |
---|---|---|---|
Climate | Pre | Annual precipitation | mm |
Tem | Annual mean temperature | °C | |
Sun | Annual sunshine duration | hours | |
Hum | Annual mean relative humidity | % | |
Rad | Annual total radiation | MJ/m2 | |
Topography | Ele | Elevation | m |
Slp | Slope | ° | |
Asp | Aspect | ° | |
Vegetation | Veg | Vegetation type | - |
Soil | Sol | Soil type | - |
Human activities | Land | Land-use type | - |
Factors | Class | Description | Factors | Class | Description | Factors | Class | Description |
---|---|---|---|---|---|---|---|---|
Annual precipitation (mm) | 1 | <800 | Elevation (m) | 1 | <325 | Vegetation Type | 1 | Coniferous forest |
2 | 800~1000 | 2 | 325~690 | 3 | Broad-leaved forest | |||
3 | 1000~1200 | 3 | 690~1020 | 4 | Bushwood | |||
4 | >1200 | 4 | 1020~1379 | 7 | Grass | |||
Annual mean temperature (°C) | 1 | <10 | 5 | 1379~1831 | 8 | Meadow | ||
2 | 10~12 | 6 | >1831 | 11 | Cultivated plant | |||
3 | 12~14 | 12 | Others | |||||
4 | 14~16 | Slope (°) | 1 | <2.5 | Soil Type | 1 | Leached soil | |
5 | >16 | 2 | 2.5~6 | 2 | Semileached soil | |||
Annual sunshine duration (hours) | 3 | 6~9.92 | 6 | Primary soil | ||||
1 | <1600 | 4 | 9.92~15.19 | 7 | Hydromorphic soil | |||
2 | 1600~1900 | 5 | >15.19 | 10 | Artificial soil | |||
3 | >1900 | 11 | Alpine soil | |||||
Aspect (°) | 1 | 337.5~22.5 | 12 | Ferralsol | ||||
Annual mean relative humidity (%) | 1 | <70 | 2 | 22.5~67.5 | 13 | Others | ||
2 | 70~75 | 3 | 67.5~112.5 | Land-use type | 1 | Cultivated land | ||
3 | >75 | 4 | 112.5~157.5 | 2 | Forest | |||
5 | 157.5~202.5 | 3 | Grass | |||||
Annual total radiation (MJ/m2) | 1 | <3600 | 6 | 202.5~247.5 | 4 | Water area | ||
2 | 3600~3960 | 7 | 247.5~292.5 | 5 | Urban and industrial area | |||
3 | >3960 | 8 | 292.5~337.5 | 6 | Unused land |
2001 | 2005 | 2010 | 2015 | 2018 | 2001–2018 | |
---|---|---|---|---|---|---|
0–0.2 | 0.069 | 0.000 | 0.069 | 0.058 | 0.058 | 0.046 |
0.2–0.4 | 0.208 | 0.301 | 0.208 | 0.405 | 0.532 | 0.231 |
0.4–0.6 | 2.637 | 1.041 | 0.786 | 1.943 | 1.966 | 1.180 |
0.6–0.8 | 63.960 | 38.607 | 30.083 | 20.402 | 17.048 | 35.068 |
0.8–1.0 | 33.125 | 60.051 | 68.853 | 77.192 | 80.396 | 63.474 |
Factors | Pre | Tem | Sun | Hum | Rad | Ele | Slp | Asp | Veg | Sol | Land |
---|---|---|---|---|---|---|---|---|---|---|---|
PD value | 0.0738 | 0.1653 | 0.0294 | 0.0170 | 0.0092 | 0.3889 | 0.2734 | 0.0094 | 0.2475 | 0.1317 | 0.2273 |
Factors | Appropriate Range/Type | The Average NDVI |
---|---|---|
Pre | 600~800 mm, 1000~1200 mm | 0.82 |
Tem | 10~12 °C | 0.86 |
Sun | <1600 h, 1900~2200 h | 0.81 |
Hum | 75~80% | 0.82 |
Rad | <3600 MJ/m2 | 0.85 |
Ele | >1379 m | 0.86 |
Slp | >15.19° | 0.86 |
Asp | 0~67.5°, 292.5°~337.5° | 0.81 |
Veg | Broad-leaved forest, meadow | 0.84 |
Sol | Leached soil | 0.82 |
Land | Forest | 0.83 |
Pre | Tem | Sun | Hum | Rad | Ele | Slp | Asp | Veg | Sol | Land | |
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | 0.0738 | ||||||||||
Tem | 0.2480 | 0.1653 | |||||||||
Sun | 0.1254 | 0.1757 | 0.0294 | ||||||||
Hum | 0.1135 | 0.1958 | 0.0740 | 0.017 | |||||||
Rad | 0.1021 | 0.2286 | 0.0928 | 0.0483 | 0.0092 | ||||||
Ele | 0.4644 | 0.4187 | 0.4151 | 0.4034 | 0.4404 | 0.3889 | |||||
Slp | 0.3410 | 0.2938 | 0.2813 | 0.2793 | 0.2857 | 0.3988 | 0.2734 | ||||
Asp | 0.0913 | 0.1774 | 0.0433 | 0.027 | 0.0196 | 0.3930 | 0.2787 | 0.0094 | |||
Veg | 0.3119 | 0.2958 | 0.2595 | 0.2847 | 0.2646 | 0.4548 | 0.3699 | 0.2657 | 0.2475 | ||
Sol | 0.2069 | 0.2263 | 0.1468 | 0.1533 | 0.1837 | 0.4036 | 0.2900 | 0.1495 | 0.2911 | 0.1317 | |
Land | 0.3048 | 0.2958 | 0.2546 | 0.2514 | 0.2557 | 0.4467 | 0.3457 | 0.2385 | 0.3361 | 0.2663 | 0.2273 |
Pre | Tem | Sun | Hum | Rad | Ele | Slp | Asp | Veg | Sol | |
---|---|---|---|---|---|---|---|---|---|---|
Tem | > | |||||||||
Sun | > | < | ||||||||
Hum | > | > | > | |||||||
Rad | > | > | > | > | ||||||
Ele | > | < | < | < | > | |||||
Slp | < | < | < | < | > | < | ||||
Asp | > | > | > | > | > | < | < | |||
Veg | < | < | < | > | > | < | < | > | ||
Sol | < | < | < | > | > | < | < | > | < | |
Land | > | < | < | > | > | < | < | > | < | < |
Pre | Tem | Sun | Hum | Rad | Ele | Slp | Asp | Veg | Sol | |
---|---|---|---|---|---|---|---|---|---|---|
Tem | Y | |||||||||
Sun | N | N | ||||||||
Hum | N | N | N | |||||||
Rad | N | N | N | N | ||||||
Ele | Y | Y | Y | Y | Y | |||||
Slp | Y | Y | Y | Y | Y | N | ||||
Asp | N | N | N | N | N | N | N | |||
Veg | Y | Y | Y | Y | Y | N | N | Y | ||
Sol | Y | N | Y | Y | Y | N | N | Y | N | |
Land | Y | Y | Y | Y | Y | N | N | Y | N | Y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Xia, J.; Zou, L.; Hong, S. Quantifying the Influences of Natural Factors and Human Activities on NDVI Changes in the Hanjiang River Basin, China. Remote Sens. 2020, 12, 3780. https://doi.org/10.3390/rs12223780
Chen T, Xia J, Zou L, Hong S. Quantifying the Influences of Natural Factors and Human Activities on NDVI Changes in the Hanjiang River Basin, China. Remote Sensing. 2020; 12(22):3780. https://doi.org/10.3390/rs12223780
Chicago/Turabian StyleChen, Ting, Jun Xia, Lei Zou, and Si Hong. 2020. "Quantifying the Influences of Natural Factors and Human Activities on NDVI Changes in the Hanjiang River Basin, China" Remote Sensing 12, no. 22: 3780. https://doi.org/10.3390/rs12223780
APA StyleChen, T., Xia, J., Zou, L., & Hong, S. (2020). Quantifying the Influences of Natural Factors and Human Activities on NDVI Changes in the Hanjiang River Basin, China. Remote Sensing, 12(22), 3780. https://doi.org/10.3390/rs12223780