A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote Sensing Data
2.2. Field Actual Evapotranspiration Data
2.3. River Flow Data
2.4. Computation of Irrigated Area
2.5. Computation of Actual Evapotranspiration, Irrigation Depth, and Water Uptake for Irrigation
2.6. Integration of Results Per Sub-Basin
2.7. Data Analysis
3. Results
3.1. Water Use Conflicts and Water Insecurity
3.2. Integrated Results for Selected Critical Basins
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ANA, Agência Nacional de Águas. Atlas de Irrigação: Uso da Água na Agricultura. 2017. Available online: http://arquivos.ana.gov.br/imprensa/publicacoes/AtlasIrrigacao-UsodaAguanaAgriculturaIrrigada.pdf (accessed on 6 July 2020).
- Pousa, R.; Costa, M.H.; Pimenta, F.M.; Fontes, V.C.; Castro, M. Climate change and intense irrigation growth in Western Bahia, Brazil: The urgent need for hydroclimatic monitoring. Water 2019, 11, 933. [Google Scholar] [CrossRef] [Green Version]
- Marques, E.A.G.; Silva Junior, G.C.; Eger, G.Z.S.; Ilambwetsi, A.M.; Pousa, R.; Generoso, T.N.; Oliveira, J.; Júnior, J.N. Analysis of groundwater and river stage fluctuations and their relationship with water use and climate variation effects on Alto Grande watershed, Northeastern Brazil. J. South. Am. Earth Sci. 2020, 103, 102723. [Google Scholar] [CrossRef]
- Bazzi, H.; Baghdadi, N.; Ienco, D.; El Hajj, M.; Zribi, M.; Belhouchette, H.; Escorihuela, M.J.; Demarez, V. Mapping irrigated areas using Sentinel-1 time series in Catalonia, Spain. Remote Sens. 2019, 11, 1836. [Google Scholar] [CrossRef] [Green Version]
- Pun, M.; Mutiibwa, D.; Li, R. Land use classification: A surface energy balance and vegetation index application to map and monitor irrigated lands. Remote Sens. 2017, 9, 1256. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, M.; Protas, É.; Salgado, M.; Souza Júnior, C. Automatic mapping of center pivot irrigation systems from satellite images using deep learning. Remote Sens. 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Jalilvand, E.; Tajrishy, M.; Hashemi, S.A.G.Z.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Folhes, M.T.; Rennó, C.D.; Soares, J.V. Remote sensing for irrigation water management in the semi-arid Northeast of Brazil. Agric. Water Manag. 2009, 96, 1398–1408. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; McVicar, T.R.; Paydar, Z.; Li, L.; Guerschman, J.P.; Donohue, R.J.; Dutta, D.; Podger, G.M.; Van Dijk, A.I.J.M.; Chiew, F.H.S. Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sens. Environ. 2014, 154, 139–152. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; Mainuddin, M.; Kirby, J.M.; Chiew, F.H.S.; McVicar, T.R.; Vaze, J. Assessing irrigated agriculture’s surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling. Sci. Total Environ. 2016, 542, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3). Algorithm Theoretical Basis Document Collection 5. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD16ATBD.pdf (accessed on 20 April 2020).
- Goddard Earth Sciences Data and Information Services Center. Available online: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary (accessed on 4 April 2020).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Bernardo, S.; Mantovani, E.C.; Da Silva, D.D.; Soares, A.A. Manual de Irrigação, 9th ed.; Editora UFV: Viçosa, Brazil, 2019; ISBN 9788572696104. [Google Scholar]
- Mantovani, E.C.; Bernardo, S.; Palaretti, L.F. Irrigação: Princípios e Métodos, 3rd ed.; Editora UFV: Viçosa, Brazil, 2009; ISBN 9788572693738. [Google Scholar]
- Pereira, O.J.R.; Ferreira, L.G.; Pinto, F.; Baumgarten, L. Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, H.A.; Huete, A.R.; Baethgen, W.E. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid. Environ. 2006, 67, 288–307. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Coelho, E.F.; Coelho Filho, M.A.; Oliveira, S.L. Agricultura irrigada: Eficiência de irrigação e de uso de água. Bahia Agríc. 2005, 7, 57–60. [Google Scholar]
- Deliberação CBHRC. 2015. Available online: https://www.conjur.com.br/dl/deliberacao-comite-bacia-corrente.pdf (accessed on 17 April 2019).
- Conab, Companhia Nacional de Abastecimento. Calendário de Plantio e Colheita de Grãos no Brasil. 2019. Available online: https://www.conab.gov.br/institucional/publicacoes/outras-publicacoes/item/7694-calendario-agricola-plantio-e-colheita (accessed on 12 August 2020).
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
Basin | Station Code | River | Station Name | Drainage Area, km2 | Irrigated Area Upstream in 2019, km2 (%) | Times Series | |
---|---|---|---|---|---|---|---|
Begin | End | ||||||
Corrente | 45590000 | Rio Correntina | Correntina | 3852.4 | 65.4 (1.7%) | 1978 | 2017 |
45740001 | Rio do Meio | Mocambo | 9039.3 | 91.2 (1.0%) | 1978 | 2017 | |
45770000 | Rio Arrojado | Arrojado | 5644.5 | 33.2 (0.6%) | 1978 | 2017 | |
45840000 | Rio Formoso | Gatos | 7132.7 | 295.0 (4.1%) | 1978 | 2017 | |
45960001 | Rio Corrente | Porto Novo | 31,155.7 | 517.0 (1.7%) | 1978 | 2017 | |
Grande | 46550000 | Rio Grande | Barreiras | 24,495.8 | 776.4 (3.2%) | 1978 | 2017 |
46570000 | Rio de Janeiro | Ponte Serafim | 2521.8 | 120.1 (4.8%) | 1978 | 2017 | |
46784000 | Rio Branco | Savana | 685.0 | 117.1 (17.1%) | 2003 | 2017 | |
46784000′ | Rio Branco | Savana | 1041.3+ | 195.3 (18.7%) | 2003 | 2017 | |
46870000 | Rio Preto | Fazenda Porto Limpo | 22,151.0 | 39.1 (0.2%) | 1978 | 2017 | |
46902000 | Rio Grande | Boqueirão | 46,395.7 | 1158.3 (2.5%) | 1978 | 2017 |
Basin | Station Code | Qimax (m3 s−1) | Q90 (m3 s−1) | Q90* (m3 s−1) | Qimax/Q90* (%) | Qmin (m3 s−1) | Qmin/Q90* (%) |
---|---|---|---|---|---|---|---|
Corrente | 45590000 | 1.91 | 23.00 | 23.15 | 8.3 | 19.19 | 82.9 |
45740001 | 2.73 | 24.51 | 24.82 | 11.0 | 18.47 | 74.4 | |
45770000 | 1.08 | 42.99 | 42.99 | 2.5 | 31.14 | 72.4 | |
45840000 | 8.84 | 53.11 | 54.35 | 16.3 | 37.10 | 68.3 | |
45960001 | 15.18 | 135.83 | 138.66 | 10.9 | 104.25 | 75.2 | |
Grande | 46550000 | 29.83 | 54.80 | 59.25 | 50.3 | 24.60 | 41.5 |
46570000 | 5.73 | 5.99 | 7.10 | 80.7 | 2.62 | 36.9 | |
46784000′ | 7.72 | 7.19 | 9.29 | 83.1 | 3.82 | 41.1 | |
46870000 | 1.38 | 74.97 | 75.04 | 1.8 | 63.75 | 84.9 | |
46902000 | 46.05 | 187.96 | 194.17 | 23.7 | 146.58 | 75.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.B.; Heil Costa, M.; Chartuni Mantovani, E.; Boninsenha, I.; Castro, M. A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil. Remote Sens. 2020, 12, 3725. https://doi.org/10.3390/rs12223725
Santos AB, Heil Costa M, Chartuni Mantovani E, Boninsenha I, Castro M. A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil. Remote Sensing. 2020; 12(22):3725. https://doi.org/10.3390/rs12223725
Chicago/Turabian StyleSantos, Ana Beatriz, Marcos Heil Costa, Everardo Chartuni Mantovani, Igor Boninsenha, and Marina Castro. 2020. "A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil" Remote Sensing 12, no. 22: 3725. https://doi.org/10.3390/rs12223725
APA StyleSantos, A. B., Heil Costa, M., Chartuni Mantovani, E., Boninsenha, I., & Castro, M. (2020). A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil. Remote Sensing, 12(22), 3725. https://doi.org/10.3390/rs12223725